19. 查看更多

 

題目列表(包括答案和解析)

19世紀(jì)德國數(shù)學(xué)家狄利克雷(1805-1859)定義了一個(gè)“奇怪的函數(shù)”--狄利克雷函數(shù):f(x)=
1,x∈Q
0,x∈CRQ
,則該函數(shù)為
 
 函數(shù)(選填:奇、偶、非奇非偶、既奇又偶)

查看答案和解析>>

(19)如圖,橢圓 (a>b>0)與過點(diǎn)A(2,0)、B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,且橢圓的離心率e=

(Ⅰ)求橢圓方程;

(Ⅱ)設(shè)Fl、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=|AF1|·|AF2|.

查看答案和解析>>

 (19)(本小題滿分12分)

為防止風(fēng)沙危害,某地決定建設(shè)防護(hù)綠化帶,種植楊樹、沙柳等植物。某人一次種植了n株沙柳,各株沙柳成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活沙柳的株數(shù),數(shù)學(xué)期望,標(biāo)準(zhǔn)差

(Ⅰ)求n,p的值并寫出的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,則需要補(bǔ)種,求需要補(bǔ)種沙柳的概率

查看答案和解析>>

 19(本小題滿分12分)

P是以為焦點(diǎn)的雙曲線C:(a>0,b>0)上的一點(diǎn),已知=0,

(1)試求雙曲線的離心率;

(2)過點(diǎn)P作直線分別與雙曲線兩漸近線相交于P1、P2兩點(diǎn),當(dāng),= 0,求雙曲線的方程.

查看答案和解析>>

. 19(本小題滿分14分)

       已知橢圓 (a>b>0)與直線

       x+y-1 = 0相交于A、B兩點(diǎn),且OAOB

       (O為坐標(biāo)原點(diǎn)).

(I)   求 + 的值;

(II)  若橢圓長(zhǎng)軸長(zhǎng)的取值范圍是[,],

       求橢圓離心率e的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案