∴點(diǎn)p的坐標(biāo)為(,0)或 -----------------------------------6分 查看更多

 

題目列表(包括答案和解析)

已知A(-3,4,0),B(2,-1,5),點(diǎn)P在z軸上,且|PA|=|PB|,則點(diǎn)P的坐標(biāo)為
(0,0,
1
2
)
(0,0,
1
2
)

查看答案和解析>>

以O(shè)為原點(diǎn),
OF
所在直線為x軸,建立直角坐標(biāo)系.設(shè)
OF
FG
=1
,點(diǎn)F的坐標(biāo)為(t,0),t∈[3,+∞).點(diǎn)G的坐標(biāo)為(x0,y0).
(1)求x0關(guān)于t的函數(shù)x0=f(t)的表達(dá)式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積S=
31
6
t
,若O以為中心,F(xiàn),為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)G,求當(dāng)|
OG
|
取最小值時(shí)橢圓的方程.
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為(0,
9
2
)
,C,D是橢圓上的兩點(diǎn),
PC
PD
(λ≠1)
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

(本小題滿分12分)

在平面直角坐標(biāo)系中,已知三點(diǎn),曲線C上任意—點(diǎn)滿足:

(l)求曲線C的方程;

(2)設(shè)點(diǎn)P是曲線C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與曲線相交于M,N兩點(diǎn),若直線PM,PN的斜率都存在,并記為,.試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論;

(3)設(shè)曲線C與y軸交于D、E兩點(diǎn),點(diǎn)M (0,m)在線段DE上,點(diǎn)P在曲線C上運(yùn)動(dòng).若當(dāng)點(diǎn)P的坐標(biāo)為(0,2)時(shí),取得最小值,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

以O(shè)為原點(diǎn),
OF
所在直線為x軸,建立直角坐標(biāo)系.設(shè)
OF
FG
=1
,點(diǎn)F的坐標(biāo)為(t,0),t∈[3,+∞).點(diǎn)G的坐標(biāo)為(x0,y0).
(1)求x0關(guān)于t的函數(shù)x0=f(t)的表達(dá)式,并判斷函數(shù)f(x)的單調(diào)性.
(2)設(shè)△OFG的面積S=
31
6
t
,若O以為中心,F(xiàn),為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)G,求當(dāng)|
OG
|
取最小值時(shí)橢圓的方程.
(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為(0,
9
2
)
,C,D是橢圓上的兩點(diǎn),
PC
PD
(λ≠1)
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

雙曲線C:=1(a>0,b>0)的離心率為2,焦點(diǎn)到雙曲線C的漸近線的距離為.點(diǎn)P的坐標(biāo)為(0,-2),過(guò)P的直線l與雙曲線C交于不同的兩點(diǎn)M、N.

(1)若PM=2PN,求直線l的方程;

(2)設(shè)O為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案