(Ⅱ)探究:是否為常數(shù)? 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).

(Ⅰ)求函數(shù)的極大值.

(Ⅱ)求證:存在,使;

(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

 

查看答案和解析>>

已知函數(shù).
(Ⅰ)求函數(shù)的極大值.
(Ⅱ)求證:存在,使;
(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù).

(Ⅰ)求函數(shù)的極大值.

(Ⅱ)求證:存在,使;

(Ⅲ)對于函數(shù)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得都成立,則稱直線為函數(shù)的分界線.試探究函數(shù)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)
(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x∈(1,+∞),使;
(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù),.(e=2.718…)

(I)求函數(shù)的極大值;(II )求證:;

   (Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得 和都成立,則稱直線為函數(shù)的“分界線”.設(shè)函數(shù),試探究函數(shù)是否存在“分界線”?若存在,請加以證明,并求出的值;若不存在,請說明理由.

查看答案和解析>>

一、選擇題(本大題共10小題,每題5分,共50分)

1.C         2.A        3.B        4.D           5.B

6.B         7.C        8.D        9.D          10.A

二、填空題(本大題共7小題,每題4分,共28分)

11.2        12.45        13.       14.

15.1        16.144       17.

三、解答題(本大題共5小題,第18―20題各14分,第21、22題各15分,共72分)

18.(1)因為(4分)

        所以

   (Ⅱ)由(I)得,

                         (10分)

         因為所以,所以(12分)

         因此,函數(shù)的值域為。(14分)

 

19.(I)因為,所以平面。 (3分)

又因為平面所以    ①(5分)

中,,由余弦定理,

因為,所以,即。②  (7分)

由①,②及,可得平面   (8分)

(Ⅱ)方法一;

中,過,則,所以平面

中,過,連,則平面,

所以為二面角的平面角   (11分)

中,求得,

中,求得

所以所以。

因此,所求二面角的大小的余弦值為。

方法二:

如圖建立空間直角坐標系 (9分)

www.ks5u.com設(shè)平面的法向量為

所以,取

  (11分)

又設(shè)平面的法向量為,

,取,則(13分)

所以,

因此,所求二面角的大小余弦值為。

 

20.(I)(6分)

   (Ⅱ)

        

        

1

2

3

4

5

                    

 

 

 

 

 

       (14分)

 

21.(I)由題意得    (3分)

     解得(5分)

     所以橢圓方程為   (6分)

(Ⅱ)直線方程為,則的坐標為  (7分)

設(shè),

直線方程為,得的橫坐標為

①    (10分)

, (12分)

代入①得, (14分)

,       為常數(shù)4   (15分)

 

22.(I)   (2分)

     由于,故嘗時,,所以,   (4分)

     故函數(shù)上單調(diào)遞增。   (5分)

   (Ⅱ)令,得到   (6分)

     的變化情況表如下:   (8分)

0

0

+

極小值

      因為函數(shù) 有三個零點,所以有三個根,

      有因為當(dāng)時,,

      所以,故   (10分)

   (Ⅲ)由(Ⅱ)可知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增。

     所以    (11分)

    

    

     記(僅在時取到等號),

     所以遞增,故,

     所以    (13分)

     于是

     故對

     ,所以   (15分)

 


同步練習(xí)冊答案