題目列表(包括答案和解析)
π | 2 |
(本題滿分12分)已知a為常數(shù),且a≠O,函數(shù)f(x)=ax+axlnx+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當a=1時,若直線y=t與曲線y=f(x)(z∈[]有公共點,求t的取值范圍,
.(本題滿分12分)已知函數(shù)的圖像與y軸的交點為他在y軸右側的第一個最高點和第一個最低點的坐標分別為和。
(Ⅰ)求的解析式及值;
(Ⅱ)若銳角滿足,求的值
(本題滿分12分)已知雙曲線的離心率為,右準線方程為。(Ⅰ)求雙曲線C的方程;(Ⅱ)已知直線與雙曲線C交于不同的兩點A,B,且線段AB的中點在圓上,求m的值.
(本題滿分12分)
已知函數(shù)(其中常數(shù))
(1)判斷函數(shù)的單調(diào)性,并加以證明;
(2)如果是奇函數(shù),求實數(shù)的值。
一、選擇題(每題5分,共60分):
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
理D
文A
B
D
D
B
A
B
A
C
理D
文A
D
A
二、填空題(每題4分,共16分):
13.1 14. 15.; 16. 24。
三、解答題(本大題共6小題,共74分):
17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx
∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x
=1+2sin(2x+)(x≠kπ k∈Z) ……(6分)
(1)f(x)的周期T=………………(8分)
(2)當sin(2x+)= -1 x= +kπ (k∈Z)時,f(x)=1-2…………(10分)
此時x的集合為{x|x= +kπ,k∈Z)………………(12分)
18、解:(1)P=1-=……(4分)
(2)要使值為整數(shù) 當a=1時,(a,b)=(1,1),(1,2),(1,4)
當a=2時,(a,b)=(2,1),(2,4) 當a=3時,(a,b)=(3,1),(3,6)
a=4,5,6時,(a,b)分別為(4,1)(5,1)(6,1) 共10種 ……(10分)
故所求概率為P== ……………………(12分)
19、(1)當λ=時,面BEF⊥面ACD …(2分)
證明如下:== EF∥CD
CD⊥面ABC ,又CD∥EF
∴ 面BEF⊥面ACB …………… (6分)
(2)作EO⊥CF于O,連BO
∵ BE⊥面EFC
∴EO為BO在面EFC內(nèi)射影∴BO⊥CF
∴∠EOB為二面角E-CF-B的平面角…………(8分)
在RtΔEFC中EO?CF=EC?EF
EO?= ? EO=
在Rt△BOE中,BE= EO=………………(10分)
∴ ∠EOB= = ∴ ∠EOB=60°故二面角E-CF-B的大小為60°(12分)
20、解(1)f '(x)=+x (x>0)
若a≥0,則f ' (x)>0 f(x)在(0,+∞)遞增………(2分)
若a<0,令f ' (x)=0 x =±
f ' (x)=>0, 又x>0x∈(,+∞)
f ' (x)<0 x∈(0,)
∴f(x)的遞增區(qū)間為(,+∞),遞減區(qū)間為(0,)……(6分)
(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)
則φ ' (x)= +x==
令φ ' (x)=0 x=1………………………………(8分)
當0<x<1時,φ ' (x)>0φ (x)遞增 當x>1時,φ ' (x)<0 φ (x)遞減
∴x=1時φ (x)=-+=0……………………(10分)
∴φ (x)≤0 即f (x)≤g(x) ∴a=1時的f(x)圖象不在g(x)圖象上方………(12分)
22.解:((1) 可設, 得= tan
==
(2) 設, 得直線的方程為
方程 = -
所以 所以有
由得 所以
=(
(3) 證明:當時,
左邊=
=
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com