如果(x.y)在映射f下的象為(x+y.x-y).那么(1.2)的原象是-------- 查看更多

 

題目列表(包括答案和解析)

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P),設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),…。如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓。特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點,
(Ⅰ)若點P(x,y)在映射f下的象為點Q(2x,1-y),
①求映射f下不動點的坐標;
②若P1的坐標為(1,2),判斷點Pn(xn,yn)(n∈N*)是否存在一個半徑為3的收斂圓,并說明理由;
(Ⅱ)若點P(x,y)在映射f下的象為點,P1(2,3),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為的收斂圓。

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點Q(-x+1,
12
y)

(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點數(shù)學公式
(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點Q(-x+1,
1
2
y)

(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>

已知f是直角坐標平面xOy到自身的一個映射,點P在映射f下的象為點Q,記作Q=f(P).設P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個圓,使所有的點Pn(xn,yn)(n∈N*)都在這個圓內(nèi)或圓上,那么稱這個圓為點Pn(xn,yn)的一個收斂圓.特別地,當P1=f(P1)時,則稱點P1為映射f下的不動點.若點P(x,y)在映射f下的象為點
(Ⅰ)求映射f下不動點的坐標;
(Ⅱ)若P1的坐標為(2,2),求證:點Pn(xn,yn)(n∈N*)存在一個半徑為2的收斂圓.

查看答案和解析>>


同步練習冊答案