題目列表(包括答案和解析)
函數(shù)f(x)的定義域為R,數(shù)列{an}滿足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若數(shù)列{an}是等差數(shù)列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k為非零常數(shù),n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),數(shù)列{bn}的前n項和為Sn,對于給定的正整數(shù)m,如果的值與n無關(guān),求k的值.
設(shè)函數(shù)f ( x )的定義域、值域均為R,f ( x ) 反函數(shù)為f1 ( x ),且對任意實數(shù)x,均有f ( x ) + f1 ( x )<。定義數(shù)列{an} : a0 = 8 , a1 = 10 , an = f (an1 ) , n = 1, 2 , … .
(1)求證:an+1 + an1<an ( n = 1 , 2 , … ) ;
(2)設(shè)求證:;
(3)是否存在常數(shù)A和B,同時滿足;
①當n = 0 及n = 1 時,有an =成立;
②當n = 2 , 3, … 時,有an<成立。
如果存在滿足上述條件的實數(shù)A、B的值;如果不存在,證明你的結(jié)論。
(1)求證:an+1 +an-1<aN(N=1,2…).
(2)設(shè)bN=an+1-2aN,N=0,1,2,….求證: bN<(-6)()n(N∈N*).
(3)是否存在常數(shù)A和B,同時滿足:
①當N=0及N=1時,有an=成立;
②當N=2,3…時,有an<成立.
如果存在滿足上述條件的實數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.
(1)求證:an+1+an-1<an(n=1,2,…);
(2)設(shè)bn=an+1-2an,n=0,1,2,…,求證:bn<(-6)()n(n∈N*).
(3)是否存在常數(shù)A和B,同時滿足
①當n=0及n=1時,有an=成立;
②當n=2,3,…時,有an<成立.
如果存在滿足上述條件的實數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.
函數(shù)的定義域為,且滿足對于任意,有.
⑴求的值;
⑵判斷的奇偶性并證明;
⑶如果≤,且在上是增函數(shù),求的取值范圍.
【解析】(Ⅰ) 通過賦值法,,求出f(1)0;
(Ⅱ) 說明函數(shù)f(x)的奇偶性,通過令,得.令,得,推出對于任意的x∈R,恒有f(-x)=f(x),f(x)為偶函數(shù).
(Ⅲ) 推出函數(shù)的周期,根據(jù)函數(shù)在[-2,2]的圖象以及函數(shù)的周期性,即可求滿足f(2x-1)≥12的實數(shù)x的集合.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com