6.已知點(diǎn)和原點(diǎn)在直線的兩側(cè).則實(shí)數(shù)的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( )
A.(-∞,10)
B.(10,+∞)
C.(-∞,9)
D.(9,+∞)

查看答案和解析>>

已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,10)B.(10,+∞)C.(-∞,9)D.(9,+∞)

查看答案和解析>>

(2009•臺州一模)已知點(diǎn)(3,1)和原點(diǎn)(0,0)在直線3x-ay+1=0的兩側(cè),則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時(shí),,則

依題意得:,即    解得

第二問當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                           

點(diǎn)6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學(xué)被抽到的概率為

設(shè)有名男同學(xué),則,男、女同學(xué)的人數(shù)分別為

(2)把名男同學(xué)和名女同學(xué)記為,則選取兩名同學(xué)的基本事件有種,其中有一名女同學(xué)的有

選出的兩名同學(xué)中恰有一名女同學(xué)的概率為

(3),

第二同學(xué)的實(shí)驗(yàn)更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點(diǎn)   

  1. 平面

    是棱的中點(diǎn)            

    平面

    平面平面

    (2)  

    同理

          

      

    ,       

    ,,    

     

    19.(本小題滿分14分)

    解:(1)由……①,得……②

    ②-①得:    

    所以,求得     

    (2),    

                                                         

     

     

    20.(本小題滿分14分)

    解:(1)由題設(shè)知:

    得:

    解得,橢圓的方程為

    (2)

                

    從而將求的最大值轉(zhuǎn)化為求的最大值

    是橢圓上的任一點(diǎn),設(shè),則有

    ,

    當(dāng)時(shí),取最大值   的最大值為

     

    21.(本小題滿分14分)

    解:(1)由,,得,

    所以,

    (2)由題設(shè)得

    對稱軸方程為,

    由于上單調(diào)遞增,則有

    (Ⅰ)當(dāng)時(shí),有

    (Ⅱ)當(dāng)時(shí),

    設(shè)方程的根為,

    ①若,則,有    解得

    ②若,即,有

              

    由①②得 。

    綜合(Ⅰ), (Ⅱ)有 

     


    同步練習(xí)冊答案