(1)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)








⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線 有公共點時,求△面積的最大值

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

 

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

B

C

A

D

B

C

C

B

 

二、填空題:

題號

11

12

13

14

15

 

答案

 

1000

6ec8aac122bd4f6e

6ec8aac122bd4f6e

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

解:(1)由=,得:=,

              即:,     

        又∵0<6ec8aac122bd4f6e     ∴=6ec8aac122bd4f6e.             

   (2)直線6ec8aac122bd4f6e方程為:

                           

6ec8aac122bd4f6e到直線6ec8aac122bd4f6e的距離為:

              ∵

              ∴       ∴ 

              又∵0<6ec8aac122bd4f6e,        

∴sin>0,cos<0

              ∴ 

∴sin6ec8aac122bd4f6e-cos6ec8aac122bd4f6e=   

17.(本小題滿分12分)

解:(1)某同學被抽到的概率為

設(shè)有名男同學,則,男、女同學的人數(shù)分別為

(2)把名男同學和名女同學記為,則選取兩名同學的基本事件有種,其中有一名女同學的有

選出的兩名同學中恰有一名女同學的概率為

(3),

,

第二同學的實驗更穩(wěn)定

                              

18.(本小題滿分14分)

解:(1)分別是棱中點   

平面

是棱的中點            

平面

平面平面

(2)  

同理

      

  

,       

,,    

 

19.(本小題滿分14分)

解:(1)由……①,得……②

②-①得:    

所以,求得     

(2)    

                                                     

 

 

20.(本小題滿分14分)

解:(1)由題設(shè)知:

得:

解得,橢圓的方程為

(2)

            

從而將求的最大值轉(zhuǎn)化為求的最大值

是橢圓上的任一點,設(shè),則有

,

時,取最大值   的最大值為

 

21.(本小題滿分14分)

解:(1)由,,得,

所以,

(2)由題設(shè)得

對稱軸方程為,

由于上單調(diào)遞增,則有

(Ⅰ)當時,有

(Ⅱ)當時,

設(shè)方程的根為,

①若,則,有    解得

②若,即,有;

          

由①②得

綜合(Ⅰ), (Ⅱ)有 

 


同步練習冊答案