(6) (7) (8) 40 (9) (10) 0.792(11) 8 或 1 (12) 0 (13) 1 (14)600二 解答題15 題 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式.
(2)根據(jù)(1)的結(jié)果,若函數(shù)y=f(kx)(k>0)周期為
3
,當x∈[0,
π
3
]
時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

非零自然數(shù)列有一個有趣的現(xiàn)象:
①1+2=3,②4+5+6=7+8,③9+10+11+12=13+14+15,….按照這樣的規(guī)律,則2012在第
44
44
個等式中.

查看答案和解析>>

(2007•閔行區(qū)一模)已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列對應(yīng)值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)y=f(x)的解析式;
(2)(文)當x∈[0,2π]時,求方程f(x)=2B的解.
(3)(理)若對任意的實數(shù)a,函數(shù)y=f(kx)(k>0),x∈(a,a+
3
]
的圖象與直線y=1有且僅有兩個不同的交點,又當x∈[0,
π
3
]
時,方程f(kx)=m恰有兩個不同的解,求實數(shù)m的取值范圍.

查看答案和解析>>

把-1125°化為2kπ+α(k∈Z,0≤α<2π)的形式是( 。

查看答案和解析>>

某研究機構(gòu)為了研究人的腳的大小與身高之問的關(guān)系,隨機抽測了20人,得到如下數(shù)據(jù):
序號 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
腳長y(碼) 48 38 40 43 44 37 40 39 46 39
序號 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
腳長y(碼) 43 41 40 43 40 44 38 42 39 41
(Ⅰ)若“身高大于l75厘米”的為“高個”,“身高小于等于175厘米”的為“非高個”;“腳長大于42碼”的為“大腳”,“腳長小于等于42碼”的為“非大腳”.請根據(jù)上表數(shù)據(jù)完成下面的2×2列聯(lián)表:
    高個   非高個     合計
大腳
非大腳     12
合計     20
(Ⅱ)根據(jù)題(I)中表格的數(shù)據(jù),若按99%的可靠性要求,能否認為腳的大小與身高之間有關(guān)系?
(Ⅲ)若按下面的方法從這20人中抽取1人來核查測量數(shù)據(jù)的誤差:將一個標有數(shù)字1,2,3,4,5,6的正六面體骰子連續(xù)投擲兩次,記朝上的兩個數(shù)字的乘積為被抽取人的序號.試求:①抽到12號的概率;②抽到“無效序號(超過20號)”的概率.

查看答案和解析>>


同步練習冊答案