(2)從這7件產(chǎn)品中一次性隨機(jī)抽取5件.記其中次品件數(shù)為.求的數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

已知7件產(chǎn)品中有4件正品和3件次品.

(Ⅰ)從這7件產(chǎn)品中一次性隨機(jī)抽取3件,求正品件數(shù)不少于次品件數(shù)的概率;

(Ⅱ)從這7件產(chǎn)品中一次性隨機(jī)抽取5件,記其中次品件數(shù)為,求的數(shù)學(xué)期望。

 

查看答案和解析>>

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(1)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:

且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
(Ⅲ)在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.

查看答案和解析>>

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(1)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:

且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
(Ⅲ)在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.

查看答案和解析>>

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(1)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:

且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.
(Ⅲ)在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.
注:(1)產(chǎn)品的“性價比”=;
(2)“性價比”大的產(chǎn)品更具可購買性.

查看答案和解析>>

(本小題滿分13分)

某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)

(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:

且X1的數(shù)字期望EX1=6,求a,b的值;

(II)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:

             3   5   3   3   8   5   5   6   3   4

             6   3   4   7   5   3   4   8   5   3

8   3   4   3   4   4   7   5   6   7

用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學(xué)期望.

     在(I)、(II)的條件下,若以“性價比”為判斷標(biāo)準(zhǔn),則哪個工廠的產(chǎn)品更具可購買性?說明理由.

注:(1)產(chǎn)品的“性價比”=;

   (2)“性價比”大的產(chǎn)品更具可購買性.

 

查看答案和解析>>

一、選擇題:BCCAC  ABCBC

二、填空題:

11.                 12. 0.94                 13.            14. ②③④

三、解答題:

15解:(1)在二項式中展開式的通項

    

依題意  12-3r=0,   r=4.          ……………………5分

常數(shù)項是第5項.                   ……… ……………7分

(2)第r項的系數(shù)為

  ∴  ∴   ……10分

∴ 的取值范圍 .          ……14分

16.解:(1)抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的

可能情況有                        ----------2分

從這7件產(chǎn)品中一次性隨機(jī)抽出3件的所有可能有----------4分

      抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的概率為       ----------7分

1

2

3

 

P

(2)

         

----10分

                  -------14分

17解: (1)記“甲投籃1次投進(jìn)”為事件A1,“乙投籃1次投進(jìn)”為事件A2,“丙投籃1次投進(jìn)”為事件A3,“3人都沒有投進(jìn)”為事件A.則 P(A1)= ,P(A2)= ,P(A3)= ,

∴ P(A) = P()=P()?P()?P()

= [1-P(A1)] ?[1-P (A2)] ?[1-P (A3)]=(1-)(1-)(1-)=          ---------6分

∴3人都沒有投進(jìn)的概率為 .                                       --------7分

(2)解法一: 隨機(jī)變量ξ的可能值有0,1,2,3), ξ~ B(3, ), ---------9分

P(ξ=k)=C3k()k()3k  (k=0,1,2,3)         ---------11分

 Eξ=np = 3× = .      ---------14分

ξ

0

1

2

3

P

解法二: ξ的概率分布為: 

 

 

 

Eξ=0×+1×+2×+3×=   .

18.解:(1)作AD的中點O,則VO⊥底面ABCD.建立如圖空間直角坐標(biāo)系,并設(shè)正方形邊長為1,則A(,0,0),B(,1,0),C(-,1,0),D(-,0,0),V(0,0,)                                    ……3分

…4分

……5分

……6分

又AB∩AV=A  ∴AB⊥平面VAD…………………7分

(2)由(Ⅰ)得是面VAD的法向量,設(shè)是面VDB的法向量,則

……10分

,…………………………………12分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為………14分

19.解:(1),,,

猜測:

……(6分)

(2)用數(shù)學(xué)歸納法證明如下:

    ① 當(dāng)時,,,等式成立;……(8分)

 、 假設(shè)當(dāng)時等式成立,即,

成立,……(9分)

那么當(dāng)時,

    ,

時等式也成立.……(13分)

由①,②可得,對一切正整數(shù)都成立.……(14分)

20.解:(1)     ……(3分)

(2)M到達(dá)(0,n+2)有兩種情況……(5分)

……(8分)

(3)數(shù)列為公比的等比數(shù)列

……(14分)

 


同步練習(xí)冊答案