在中...是的中點(diǎn).將表示為角的函數(shù).并求這個函數(shù)的值域. 查看更多

 

題目列表(包括答案和解析)

下圖表示了一個由區(qū)間(0,1)到實數(shù)集的映射過程:區(qū)間(0,1)精英家教網(wǎng)中的實數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,如圖1;將線段AB圍成一個圓,使兩端點(diǎn)A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點(diǎn)N  n  0,則m的象就是n,記作f(m)=n,下列正確命題的序號是
 
.(填出所有正確命題的序號)
①f(
1
2
)=0;
②f(x)是奇函數(shù);
③f(x)在定義域上單調(diào)遞增;
④f(x)的圖象關(guān)于點(diǎn)(
1
2
,0)對稱.

查看答案和解析>>

如圖表示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,如圖1;將線段AB圍成一個圓,使兩端點(diǎn)A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點(diǎn)N(n,0),則 m的象就是n,記作f(m)=n.
(1)方程f(x)=0的解是x=
1
2
1
2

(2)下列說法中正確的是命題序號是
③④
③④
.(填出所有正確命題的序號)
f(
1
4
)=1
;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增;④f(x)的圖象關(guān)于點(diǎn)(
1
2
,0)
對稱.

查看答案和解析>>

下圖表示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,如圖1;將線段AB圍成一個圓,使兩端點(diǎn)A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點(diǎn)N(n,0),則 m的象就是n,記作

(1)方程的解是x=           ;

(2)下列說法中正確的是命題序號是           .(填出所有正確命題的序號)

;               ②是奇函數(shù); 

在定義域上單調(diào)遞增; ④的圖象關(guān)于點(diǎn)對稱.

 

查看答案和解析>>

如圖表示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,如圖1;將線段AB圍成一個圓,使兩端點(diǎn)A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點(diǎn)N(n,0),則 m的象就是n,記作f(m)=n.
(1)方程f(x)=0的解是x=________;
(2)下列說法中正確的是命題序號是________.(填出所有正確命題的序號)
數(shù)學(xué)公式;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增;④f(x)的圖象關(guān)于點(diǎn)數(shù)學(xué)公式對稱.

查看答案和解析>>

如圖表示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點(diǎn)M,如圖1;將線段AB圍成一個圓,使兩端點(diǎn)A、B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1),如圖3,圖3中直線AM與x軸交于點(diǎn)N(n,0),則 m的象就是n,記作f(m)=n.
(1)方程f(x)=0的解是x=   
(2)下列說法中正確的是命題序號是    .(填出所有正確命題的序號)
;②f(x)是奇函數(shù);③f(x)在定義域上單調(diào)遞增;④f(x)的圖象關(guān)于點(diǎn)對稱.

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

(Ⅰ)由,得,  ∴

,即,得……………4分

(Ⅱ)當(dāng)時,

,即,…………………………7分

知,

,是首項為,公比為的等比數(shù)列,

  ……………………………………………………10分

(18)解:

,知,又,由正弦定理,有

,∴,,……3分

  ……………6分

        

         …………9分

,,  ∴,

故所求函數(shù)為,函數(shù)的值域為……………12分

(19)解:

      記顧客購買一件產(chǎn)品,獲一等獎為事件,獲二等獎為事件,不獲獎為事件,則,,

(Ⅰ)該顧客購買2件產(chǎn)品,中獎的概率

  ……………4分

  (Ⅱ)該顧客獲得獎金數(shù)不小于100元的可能值為100元,120元,200元,依次記這三個事件為、,則

        ,………6分

        ,………8分

      ,………10分

    所以該顧客獲得獎金數(shù)不小于100元的概率

……12分

(20)解法一:

      (Ⅰ)取中點(diǎn),連結(jié)、,則,

       又, ∴,四邊形是平行四邊形,

       ∴,又,,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴,

       又平面平面,∴

      而,  ∴

     作,則,且的中點(diǎn)。

,連結(jié),則,

 于是為二面角的平面角!8分

,,∴,

在正方形中,作,則

,

,∴。

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,,

, ,,

, ∴

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且。

,

,取,,則 ……………8分

為面的法向量,所以,

因為二面角為銳角,所以其大小為…………………………12分

(21)解:

     (Ⅰ) 

      令,,則………………2分

,即,則恒有,函數(shù)沒有極值點(diǎn)。…………4分

,即,或,則有兩個不相等的實根、,且的變化如下:

由此,是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn)。

綜上所述,的取值范圍是…………………………7分

(Ⅱ)由(Ⅰ)知,,

…………………………10分

,得(舍去),,

所以,…………………………12分

(22)解:

(Ⅰ)記

                          ①

                            ②

,得

,                 ③

由①、③,得,即……3分

由于,則上面方程可化為

,即,所以,

代入①式,整理,并注意,得

由于,所以

因此,直線與雙曲線有一個公共點(diǎn)…………………………6分

(注:直線和雙曲線聯(lián)立后,利用判斷交點(diǎn)個數(shù)也可)

(Ⅱ)雙曲線的漸近線方程為,不妨設(shè)點(diǎn)在直線上, 點(diǎn)在直線上。

,得點(diǎn)坐標(biāo)為,

,得點(diǎn)坐標(biāo)為,…………………………9分

因為,

所以為線段的中點(diǎn)!12分

(注:若只計算、的橫坐標(biāo)或縱坐標(biāo)判斷為線段的中點(diǎn)不扣分)

 

 

 


同步練習(xí)冊答案