設(shè)是雙曲線:上一點(diǎn).直線方程是 查看更多

 

題目列表(包括答案和解析)

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,漸近線l1上一點(diǎn)P(
3
3
6
3
)滿足:直線PF與漸近線l1垂直.       
(1)求該雙曲線方程;
(2)設(shè)A、B為雙曲線上兩點(diǎn),若點(diǎn)N(1,2)是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)為F,漸近線l1上一點(diǎn)P(
3
3
,
6
3
)滿足:直線PF與漸近線l1垂直.       
(1)求該雙曲線方程;
(2)設(shè)A、B為雙曲線上兩點(diǎn),若點(diǎn)N(1,2)是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

設(shè)雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為2,其一個(gè)頂點(diǎn)的坐標(biāo)是(
1
3
,0)
;又直線l:y=kx+1與雙曲線C相交于不同的A、B兩點(diǎn).
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓過(guò)坐標(biāo)的原點(diǎn)?若存在,求出k的值;若不存在,寫(xiě)出理由.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個(gè)焦點(diǎn)是F2(2,0),且b=
3
a

(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過(guò)焦點(diǎn)F2的直線l的一個(gè)法向量為(m,1),當(dāng)直線l與雙曲線C的右支相交于A,B不同的兩點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;并證明AB中點(diǎn)M在曲線3(x-1)2-y2=3上.
(3)設(shè)(2)中直線l與雙曲線C的右支相交于A,B兩點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得∠AOB為銳角?若存在,請(qǐng)求出m的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F(
3
,0)
,一條漸近線m:x+
2
y=0,設(shè)過(guò)點(diǎn)A(-3
2
,0)的直線l的方向向量e=(1,k),
(1)求雙曲線C的方程;
(2)若過(guò)原點(diǎn)的直線a∥l,且a與l的距離為
6
,求k的值;
(3)證明:當(dāng)k>
2
2
時(shí),在雙曲線C的右支上不存在點(diǎn)Q,使之到直線l的距離為
6

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

(Ⅰ)由,得,  ∴

,即,得……………4分

(Ⅱ)當(dāng)時(shí),,

,即,…………………………7分

知,,

,是首項(xiàng)為,公比為的等比數(shù)列,

  ……………………………………………………10分

(18)解:

,知,又,由正弦定理,有

,∴,……3分

  ……………6分

        

         …………9分

,,  ∴,

故所求函數(shù)為,函數(shù)的值域?yàn)?sub>……………12分

(19)解:

      記顧客購(gòu)買(mǎi)一件產(chǎn)品,獲一等獎(jiǎng)為事件,獲二等獎(jiǎng)為事件,不獲獎(jiǎng)為事件,則,,

(Ⅰ)該顧客購(gòu)買(mǎi)2件產(chǎn)品,中獎(jiǎng)的概率

  ……………4分

  (Ⅱ)該顧客獲得獎(jiǎng)金數(shù)不小于100元的可能值為100元,120元,200元,依次記這三個(gè)事件為、、,則

        ,………6分

        ,………8分

      ,………10分

    所以該顧客獲得獎(jiǎng)金數(shù)不小于100元的概率

……12分

(20)解法一:

      (Ⅰ)取中點(diǎn),連結(jié)、,則,

       又, ∴,四邊形是平行四邊形,

       ∴,又,,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴

       又平面平面,∴

      而,  ∴

     作,則,且的中點(diǎn)。

,連結(jié),則,

 于是為二面角的平面角!8分

,,∴,

在正方形中,作,則

,

,∴

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,使軸,分別在軸、軸上。

(Ⅰ)由已知,,,,,,

,,

, ∴,

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且。

,,

,取,,,則 ……………8分

為面的法向量,所以,

因?yàn)槎娼?sub>為銳角,所以其大小為…………………………12分

(21)解:

     (Ⅰ) 

      令,則………………2分

,即,則恒有,函數(shù)沒(méi)有極值點(diǎn)!4分

,即,或,則有兩個(gè)不相等的實(shí)根、,且的變化如下:

由此,是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn)。

綜上所述,的取值范圍是…………………………7分

(Ⅱ)由(Ⅰ)知,,

…………………………10分

,得(舍去),,

所以,…………………………12分

(22)解:

(Ⅰ)記

                          ①

                            ②

,得

,                 ③

由①、③,得,即……3分

由于,,則上面方程可化為

,即,所以,

代入①式,整理,并注意,得

由于,所以

因此,直線與雙曲線有一個(gè)公共點(diǎn)…………………………6分

(注:直線和雙曲線聯(lián)立后,利用判斷交點(diǎn)個(gè)數(shù)也可)

(Ⅱ)雙曲線的漸近線方程為,不妨設(shè)點(diǎn)在直線上, 點(diǎn)在直線上。

,得點(diǎn)坐標(biāo)為,

,得點(diǎn)坐標(biāo)為,…………………………9分

因?yàn)?sub>,

所以為線段的中點(diǎn)!12分

(注:若只計(jì)算、的橫坐標(biāo)或縱坐標(biāo)判斷為線段的中點(diǎn)不扣分)

 

 

 


同步練習(xí)冊(cè)答案