因此.實(shí)數(shù)的取值范圍是. ---------- 14分 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和

(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問

     若成等比數(shù)列,則,

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>

已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對稱,且f(x)=x2+2x.
(Ⅰ) 求函數(shù)g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)的圖象經(jīng)過點(diǎn)(1,λ),且對任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足a1=λ-2,an+1=
2n,n為奇數(shù)
f(an),n為偶數(shù)

(1)當(dāng)x為正整數(shù)時(shí),求f(n)的表達(dá)式;
(2)設(shè)λ=3,求a1+a2+a3+…+a2n;
(3)若對任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足
a
2
n
=S2n-1,n∈N*
.?dāng)?shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(I)求a1,d和Tn;
(II)若對任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)公式為an=n2+λn+2011(其中,λ為實(shí)常數(shù)),且僅有第4項(xiàng)是最小項(xiàng),則實(shí)數(shù)λ的取值范圍為
 

查看答案和解析>>


同步練習(xí)冊答案