題目列表(包括答案和解析)
【選做題】本題包括A、B、C三小題,請選定其中兩題,并在答題卡相應(yīng)的答題區(qū)域內(nèi)作答.若三題都做,則按A、B兩題評分.
A.(選修模塊3—3)(12分)
(1)(4分)判斷以下說法的正誤,在相應(yīng)的括號內(nèi)打“√”或“×”。
(A)用手捏面包,面包體積會縮小,說明分子之間有間隙。( )
(B)溫度相同的氫氣和氧氣,氫氣分子和氧氣分子的平均速率相同。( )
(C)夏天荷葉上小水珠呈球狀,是由于液體表面張力使其表面積具有收縮到最小趨勢的緣故。( )
(D)自然界中進(jìn)行的一切與熱現(xiàn)象有關(guān)的宏觀過程都具有方向性。( )
(2)(4分)在“用油膜法估測分子的大小”的實驗中,有下列操作步驟,請補(bǔ)充實驗步驟的內(nèi)容及實驗步驟中的計算式:
(A)用滴管將濃度為的油酸酒精溶液逐滴滴入量筒,記下的油酸酒精溶液的滴數(shù);
(B)將痱子粉末均勻地撒在淺盤內(nèi)的水面上,用滴管吸取濃度為的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足夠大,且不與器壁接觸為止,記下滴入的滴數(shù);
(C)________________▲________________;
(D)將畫有油酸薄膜輪廓的玻璃板放在坐標(biāo)紙上,以坐標(biāo)紙上邊長的正方形為單位,計算輪廓內(nèi)正方形的個數(shù);
(E)用上述測量的物理量可以估算出單個油酸分子的直徑__▲____。
(3)如圖所示,上端開口的光滑圓柱形氣缸豎直放置,截面積為40cm2的活塞將
一定質(zhì)量的氣體和一形狀不規(guī)則的固體A封閉在氣缸內(nèi)。在氣缸內(nèi)距缸底60cm
處設(shè)有卡環(huán)ab,使活塞只能向上滑動。開始時活塞擱在ab上,缸內(nèi)氣體的壓
強(qiáng)等于大氣壓強(qiáng)為p0=1.0×105Pa,溫度為300K,F(xiàn)緩慢加熱汽缸內(nèi)氣體,當(dāng)
溫度緩慢升高為330K,活塞恰好離開ab;當(dāng)溫度緩慢升高為360K時,活塞上
升了4cm。求:
(1)活塞的質(zhì)量;
(2)整個過程中氣體對外界做的功。
B.(選修模塊3—4)(12分)
(1)(4分)判斷以下說法的正誤,在相應(yīng)的括號內(nèi)打“√”或“×”。
(A)光速不變原理是狹義相對論的兩個基本假設(shè)之一。( )
(B)拍攝玻璃櫥窗內(nèi)的物品時,往往在鏡頭前加一個偏振片以增加透射光的強(qiáng)度。( )
(C)光在介質(zhì)中的速度大于光在真空中的速度。( )
(D)變化的電場一定產(chǎn)生變化的磁場;變化的磁場一定產(chǎn)生變化的電場。( )
(2)(4分)如圖為一橫波發(fā)生器的顯示屏,可以顯示出波由0點從左向右傳播的圖像,屏上每一小格長度為1cm。在t=0時刻橫波發(fā)生器上能顯示的波形如圖所示。因為顯示屏的局部故障,造成從水平位置A到B之間(不包括A、B兩處)的波形無法被觀察到(故障不影響波在發(fā)生器內(nèi)傳播)。此后的時間內(nèi),觀察者看到波形相繼傳經(jīng)B、C處,在t=5秒時,觀察者看到C處恰好第三次(從C開始振動后算起)出現(xiàn)平衡位置,則該波的波速可能是
(A)3.6cm/s (B)4.8cm/s
(C)6cm/s (D)7.2cm/s
(3)(4分)如圖所示,某同學(xué)用插針法測定一半圓形玻璃磚的折射率。在平鋪的白紙上垂直紙面插大頭針、確定入射光線,并讓入射光線過圓心,在玻璃磚(圖中實線部分)另一側(cè)垂直紙面插大頭針,使擋住、的像,連接。圖中為分界面,虛線半圓與玻璃磚對稱,、分別是入射光線、折射光線與圓的交點,、均垂直于法線并分別交法線于、點。設(shè)的長度為,的長度為,的長度為,的長度為,求:
①為較方便地表示出玻璃磚的折射率,需用刻度尺測量(用上述給
出量的字母表示),
②玻璃磚的折射率
C.(選修模塊3—5)(12分)
(1)下列說法中正確的是___▲_____
(A)X射線是處于激發(fā)態(tài)的原子核輻射出的
(B)放射性元素發(fā)生一次β衰變,原子序數(shù)增加1
(C)光電效應(yīng)揭示了光具有粒子性,康普頓效應(yīng)揭示了光具有波動性
(D)原子核的半衰期不僅與核內(nèi)部自身因素有關(guān),還與原子所處的化學(xué)狀態(tài)
有關(guān)
(2)氫原子的能級如圖所示,當(dāng)氫原子從n=4向n=2的能級躍遷時,輻射的光
子照射在某金屬上,剛好能發(fā)生光電效應(yīng),則該金屬的逸出功為 ▲ eV。
現(xiàn)有一群處于n=5的能級的氫原子向低能級躍遷,在輻射出的各種頻率的
光子中,能使該金屬發(fā)生光電效應(yīng)的頻率共有 ▲ 種。
(3)如圖,質(zhì)量為m的小球系于長L=0.8m的輕繩末端。繩的另一端
系于O點。將小球移到輕繩水平位置后釋放,小球擺到最低點A
時,恰與原靜止于水平面上的物塊P相碰。碰后小球回擺,上升的
最高點為B,A、B的高度差為h=0.2m。已知P的質(zhì)量為M=3m,
P與水平面間的動摩擦因數(shù)為μ=0.25,小球與P的相互作用時間
極短。求P沿水平面滑行的距離。
【選做題】本題包括A、B、C三小題,請選定其中兩題,并在答題卡相應(yīng)的答題區(qū)域內(nèi)作答.若三題都做,則按A、B兩題評分.
A.(選修模塊3—3)(12分)
(1)(4分)判斷以下說法的正誤,在相應(yīng)的括號內(nèi)打“√”或“×”。
(A)用手捏面包,面包體積會縮小,說明分子之間有間隙。( )
(B)溫度相同的氫氣和氧氣,氫氣分子和氧氣分子的平均速率相同。( )
(C)夏天荷葉上小水珠呈球狀,是由于液體表面張力使其表面積具有收縮到最小趨勢的緣故。( )
(D)自然界中進(jìn)行的一切與熱現(xiàn)象有關(guān)的宏觀過程都具有方向性。( )
(2)(4分)在“用油膜法估測分子的大小”的實驗中,有下列操作步驟,請補(bǔ)充實驗步驟的內(nèi)容及實驗步驟中的計算式:
(A)用滴管將濃度為的油酸酒精溶液逐滴滴入量筒,記下的油酸酒精溶液的滴數(shù);
(B)將痱子粉末均勻地撒在淺盤內(nèi)的水面上,用滴管吸取濃度為的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足夠大,且不與器壁接觸為止,記下滴入的滴數(shù);
(C)________________▲________________;
(D)將畫有油酸薄膜輪廓的玻璃板放在坐標(biāo)紙上,以坐標(biāo)紙上邊長的正方形為單位,計算輪廓內(nèi)正方形的個數(shù);
(E)用上述測量的物理量可以估算出單個油酸分子的直徑__▲____。
(3)如圖所示,上端開口的光滑圓柱形氣缸豎直放置,截面積為40cm2的活塞將
一定質(zhì)量的氣體和一形狀不規(guī)則的固體A封閉在氣缸內(nèi)。在氣缸內(nèi)距缸底60cm
處設(shè)有卡環(huán)ab,使活塞只能向上滑動。開始時活塞擱在ab上,缸內(nèi)氣體的壓
強(qiáng)等于大氣壓強(qiáng)為p0=1.0×105Pa,溫度為300K,F(xiàn)緩慢加熱汽缸內(nèi)氣體,當(dāng)
溫度緩慢升高為330K,活塞恰好離開ab;當(dāng)溫度緩慢升高為360K時,活塞上
升了4cm。求:
(1)活塞的質(zhì)量;
(2)整個過程中氣體對外界做的功。
B.(選修模塊3—4)(12分)
(1)(4分)判斷以下說法的正誤,在相應(yīng)的括號內(nèi)打“√”或“×”。
(A)光速不變原理是狹義相對論的兩個基本假設(shè)之一。( )
(B)拍攝玻璃櫥窗內(nèi)的物品時,往往在鏡頭前加一個偏振片以增加透射光的強(qiáng)度。( )
(C)光在介質(zhì)中的速度大于光在真空中的速度。( )
(D)變化的電場一定產(chǎn)生變化的磁場;變化的磁場一定產(chǎn)生變化的電場。( )
(2)(4分)如圖為一橫波發(fā)生器的顯示屏,可以顯示出波由0點從左向右傳播的圖像,屏上每一小格長度為1cm。在t=0時刻橫波發(fā)生器上能顯示的波形如圖所示。因為顯示屏的局部故障,造成從水平位置A到B之間(不包括A、B兩處)的波形無法被觀察到(故障不影響波在發(fā)生器內(nèi)傳播)。此后的時間內(nèi),觀察者看到波形相繼傳經(jīng)B、C處,在t=5秒時,觀察者看到C處恰好第三次(從C開始振動后算起)出現(xiàn)平衡位置,則該波的波速可能是
(A)3.6cm/s (B)4.8cm/s
(C)6cm/s (D)7.2cm/s
(3)(4分)如圖所示,某同學(xué)用插針法測定一半圓形玻璃磚的折射率。在平鋪的白紙上垂直紙面插大頭針、確定入射光線,并讓入射光線過圓心,在玻璃磚(圖中實線部分)另一側(cè)垂直紙面插大頭針,使擋住、的像,連接。圖中為分界面,虛線半圓與玻璃磚對稱,、分別是入射光線、折射光線與圓的交點,、均垂直于法線并分別交法線于、點。設(shè)的長度為,的長度為,的長度為,的長度為,求:
①為較方便地表示出玻璃磚的折射率,需用刻度尺測量(用上述給
出量的字母表示),
②玻璃磚的折射率
C.(選修模塊3—5)(12分)
(1)下列說法中正確的是___▲_____
(A)X射線是處于激發(fā)態(tài)的原子核輻射出的
(B)放射性元素發(fā)生一次β衰變,原子序數(shù)增加1
(C)光電效應(yīng)揭示了光具有粒子性,康普頓效應(yīng)揭示了光具有波動性
(D)原子核的半衰期不僅與核內(nèi)部自身因素有關(guān),還與原子所處的化學(xué)狀態(tài)
有關(guān)
(2)氫原子的能級如圖所示,當(dāng)氫原子從n=4向n=2的能級躍遷時,輻射的光
子照射在某金屬上,剛好能發(fā)生光電效應(yīng),則該金屬的逸出功為 ▲ eV。
現(xiàn)有一群處于n=5的能級的氫原子向低能級躍遷,在輻射出的各種頻率的
光子中,能使該金屬發(fā)生光電效應(yīng)的頻率共有 ▲ 種。
(3)如圖,質(zhì)量為m的小球系于長L=0.8m的輕繩末端。繩的另一端
系于O點。將小球移到輕繩水平位置后釋放,小球擺到最低點A
時,恰與原靜止于水平面上的物塊P相碰。碰后小球回擺,上升的
最高點為B,A、B的高度差為h=0.2m。已知P的質(zhì)量為M=3m,
P與水平面間的動摩擦因數(shù)為μ=0.25,小球與P的相互作用時間
極短。求P沿水平面滑行的距離。
第九部分 穩(wěn)恒電流
第一講 基本知識介紹
第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導(dǎo)電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導(dǎo)電的情形有什么區(qū)別。
應(yīng)該說,第一塊的知識和高考考綱對應(yīng)得比較好,深化的部分是對復(fù)雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓(xùn)資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。
一、歐姆定律
1、電阻定律
a、電阻定律 R = ρ
b、金屬的電阻率 ρ = ρ0(1 + αt)
2、歐姆定律
a、外電路歐姆定律 U = IR ,順著電流方向電勢降落
b、含源電路歐姆定律
在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負(fù)極電勢降落,負(fù)極到正極電勢升高(與電流方向無關(guān)),可以得到以下關(guān)系
UA ? IR ? ε ? Ir = UB
這就是含源電路歐姆定律。
c、閉合電路歐姆定律
在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I =
這就是閉合電路歐姆定律。值得注意的的是:①對于復(fù)雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯(lián)或混聯(lián),但不能包含電源。
二、復(fù)雜電路的計算
1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來等效。(事實上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)
應(yīng)用方法:其等效電路的電壓源的電動勢等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進(jìn)去該網(wǎng)絡(luò)中所有獨立源為零值時的等效電阻。
2、基爾霍夫(克?品颍┒
a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強(qiáng)度的總和,等于從該點流出的電流強(qiáng)度的總和。
例如,在圖8-2中,針對節(jié)點P ,有
I2 + I3 = I1
基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。
對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強(qiáng)度的總和,等于從該“包容塊”流出的電流強(qiáng)度的總和。
b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強(qiáng)度乘積的代數(shù)和。
例如,在圖8-2中,針對閉合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學(xué)們可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ變換
在難以看清串、并聯(lián)關(guān)系的電路中,進(jìn)行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中
☆同學(xué)們可以證明Δ→ Y的結(jié)論…
Rc =
Rb =
Ra =
Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>
R1 =
R2 =
R3 =
三、電功和電功率
1、電源
使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機(jī)、電池等。發(fā)電機(jī)是將機(jī)械能轉(zhuǎn)變?yōu)殡娔埽桓呻姵、蓄電池是將化學(xué)能轉(zhuǎn)變?yōu)殡娔埽还怆姵厥菍⒐饽苻D(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔;在電子設(shè)備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。
電源電動勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時的電動勢和內(nèi)阻的值。
例如,電動勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動勢ε和內(nèi)阻r分別為(☆師生共同推導(dǎo)…)
ε =
r =
2、電功、電功率
電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內(nèi)電場力所作的功叫做電功率P 。
計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。
對非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。
四、物質(zhì)的導(dǎo)電性
在不同的物質(zhì)中,電荷定向移動形成電流的規(guī)律并不是完全相同的。
1、金屬中的電流
即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。
2、液體導(dǎo)電
能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負(fù)離子導(dǎo)電是液體導(dǎo)電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。
在電解液中加電場時,在兩個電極上(或電極旁)同時產(chǎn)生化學(xué)反應(yīng)的過程叫作“電解”。電解的結(jié)果是在兩個極板上(或電極旁)生成新的物質(zhì)。
液體導(dǎo)電遵從法拉第電解定律——
法拉第電解第一定律:電解時在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強(qiáng)度、跟通電時間成正比。表達(dá)式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當(dāng)量,電化當(dāng)量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當(dāng)量在數(shù)值上等于通過1C電量時析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)
法拉第電解第二定律:物質(zhì)的電化當(dāng)量K和它的化學(xué)當(dāng)量成正比。某種物質(zhì)的化學(xué)當(dāng)量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價n的比值,即 K = ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。
將兩個定律聯(lián)立可得:m = Q 。
3、氣體導(dǎo)電
氣體導(dǎo)電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——
a、被激放電
在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產(chǎn)生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有
b、自激放電
但是,當(dāng)電場足夠強(qiáng),電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。
常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。
4、超導(dǎo)現(xiàn)象
據(jù)金屬電阻率和溫度的關(guān)系,電阻率會隨著溫度的降低和降低。當(dāng)電阻率降為零時,稱為超導(dǎo)現(xiàn)象。電阻率為零時對應(yīng)的溫度稱為臨界溫度。超導(dǎo)現(xiàn)象首先是荷蘭物理學(xué)家昂尼斯發(fā)現(xiàn)的。
超導(dǎo)的應(yīng)用前景是顯而易見且相當(dāng)廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價值不大,為了解決這個矛盾,科學(xué)家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當(dāng)今前沿科技的一個熱門領(lǐng)域。當(dāng)前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當(dāng)然,這個溫度距產(chǎn)業(yè)化的期望值還很遠(yuǎn)。
5、半導(dǎo)體
半導(dǎo)體的電阻率界于導(dǎo)體和絕緣體之間,且ρ
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細(xì)的補(bǔ)充。
一、簡諧運動
1、簡諧運動定義:= -k ①
凡是所受合力和位移滿足①式的質(zhì)點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數(shù)學(xué)工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據(jù):x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關(guān)規(guī)律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。
運動學(xué)參量的相互關(guān)系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當(dāng)質(zhì)點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構(gòu)成了質(zhì)點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為
+-2cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構(gòu)成,即
= mv2 + kx2 = kA2
注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當(dāng)我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機(jī)械波
1、波的產(chǎn)生和傳播
產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)
2、機(jī)械波的描述
a、波動圖象。和振動圖象的聯(lián)系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
這個方程展示的是一個復(fù)變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強(qiáng)的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當(dāng)振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強(qiáng),振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應(yīng)
當(dāng)波源或者接受者相對與波的傳播介質(zhì)運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——
a、只有接收者相對介質(zhì)運動(如圖3所示)
設(shè)接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,
當(dāng)他迎著波源運動時,設(shè)其在單位時間到達(dá)B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = = =
顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負(fù)值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質(zhì)運動(如圖4所示)
設(shè)波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內(nèi),接收者在A點應(yīng)接收f個波,故S到A的距離:= fλ
在單位時間內(nèi),S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= = = =
而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>
f2 = = f
當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。
c、當(dāng)接收者和波源均相對傳播介質(zhì)運動
當(dāng)接收者正對波源以速度v1(相對介質(zhì)速度)運動,波源也正對接收者以速度v2(相對介質(zhì)速度)運動,我們的討論可以在b情形的過程上延續(xù)…
f3 = f2 = f
關(guān)于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調(diào)、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細(xì)均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動方向上的合力(而非整體合力)。當(dāng)簡諧運動被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。
本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復(fù)力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學(xué)生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導(dǎo)軌,一電動松鼠可在導(dǎo)軌上運動。現(xiàn)觀察到松鼠正在導(dǎo)軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據(jù)牛頓第三定律,這個力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——
= -k
其中k = ,對于這個系統(tǒng)而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進(jìn)一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com