已知數(shù)列 , 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列(k為常數(shù)),那到下列結(jié)論中正確的是      

A.為等比數(shù)列                      B.為等比數(shù)列

C.為等差數(shù)列                      D.為等差數(shù)列

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實(shí)數(shù)t的取

值范圍為(   )

A、     B、      C、     D、

 

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實(shí)數(shù)t的取
值范圍為(  )
A.B.C.D.

查看答案和解析>>

已知數(shù)列中,為常數(shù)),且單調(diào)遞減,則實(shí)數(shù)t的取
值范圍為(  )

A. B. C. D.

查看答案和解析>>

已知數(shù)列{an}中,a1=1,an+1=2an-n2+3n(n∈N+),
(1)是否存在常數(shù)λ,μ,使得數(shù)列{an+λn2+μn}是等比數(shù)列,若存在,求λ,μ的值,若不存在,說(shuō)明理由;
(2)設(shè)bn=an-n2+n(n∈N+),數(shù)列{bn}的前n項(xiàng)和為Sn,是否存在常數(shù)c,使得lg(Sn-c)+lg(Sn+2-c)=2lg(Sn+1-c)成立?并證明你的結(jié)論;
(3)設(shè)cn=
1
an+n-2n-1
,Tn=c1+c2+…+c3,證明
6n
(n+1)(2n+1)
<Tn
5
3
(n≥2).

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

          ?

                  cos              =

           

                  由,  ,    即B=              (6分)

                                                         (7分)

                                                                  (9分)

          ,                                                         (11分)

          的取值范圍是(,1                                                      (13分)

          18.解:①設(shè)雙曲線(xiàn)方程為:  ()                                 (1分)

          由橢圓,求得兩焦點(diǎn),                                           (3分)

          ,又為一條漸近線(xiàn)

          , 解得:                                                     (5分)

                                                              (6分)

          ②設(shè),則                                                      (7分)

                

          ?                             (9分)

          ,  ?              (10分)

                                                          (11分)

            ?

          ?                                        (13分)

                  單減區(qū)間為[]        (6分)

                 

                ②(i)當(dāng)                                                      (8分)

                (ii)當(dāng),

                ,  (),

                則有                                                                     (10分)

                ,

                                                               (11分)

                  在(0,1]上單調(diào)遞減                     (12分)

                                                                 (13分)

                20.解:①       

                                                                        (2分)

                從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

                  即                                (4分)

                 

                   即………………※              (6分)

                當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

                當(dāng)n=2時(shí),由※得:                                                 (8分)

                當(dāng)n=3時(shí),由※得:                                                 (9分)

                當(dāng)

                    (

                                                          (11分)

                                         (12分)

                綜上分析可知,滿(mǎn)足條件的實(shí)數(shù)c不存在.                                    (13分)

                21.解:①設(shè)過(guò)A作拋物線(xiàn)的切線(xiàn)斜率為K,則切線(xiàn)方程:

                                                                                (2分)

                    即

                                                                                                                   (3分)

                ②設(shè)   又

                     

                                                                         (4分)

                同理可得 

                                                                (5分)

                又兩切點(diǎn)交于 

                                               (6分)

                ③由  可得:

                 

                                                                (8分)

                                  (9分)

                 

                當(dāng) 

                當(dāng) 

                                                                     (11分)

                當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                                       (12分)

                22.①證明:由,    

                  即證

                  ()                                    (1分)

                當(dāng)  

                      即:                          (3分)

                  ()    

                當(dāng)   

                   

                                                                         (6分)

                ②由      

                數(shù)列

                                                              (8分)

                由①可知, 

                                    (10分)

                由錯(cuò)位相減法得:                                       (11分)

                                                    (12分)

                 

                 


                同步練習(xí)冊(cè)答案