(3)若:|OA|的最小值. 查看更多

 

題目列表(包括答案和解析)

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個(gè)不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.

查看答案和解析>>

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實(shí)數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實(shí)數(shù)t,使得直線l與曲線C有兩個(gè)不同的公共點(diǎn)A、B,且
OA
OB
=10
(其中O為坐標(biāo)原點(diǎn))?若存在,請求出;否則,請說明理由.

查看答案和解析>>

在△ABC中,O為中線AM上一個(gè)動點(diǎn),若AM=2,則
OA
•(
OB
+
OC
)
的最小值是
 

查看答案和解析>>

在△ABC中,O為中線AM上一個(gè)動點(diǎn),若AM=4,則
OA
•(
OB
+
OC
)
的最小值是
-8
-8

查看答案和解析>>

在△ABC中,O是中線AM上一個(gè)動點(diǎn),若|AM|=4,則
OA
•(
OB
+
OC
)
的最小值是(  )

查看答案和解析>>

一.選擇題

1―5  CBABA   6―10  CADDA

二.填空題

11.       12.()       13.2          14.         15.

16.(1,4)

三.解答題

數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

        ?,                                        (4分)

?

        cos              =

 

        由,  ,    即B=              (6分)

                                               (7分)

                                                        (9分)

                                                        (11分)

的取值范圍是(,1                                                      (13分)

18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

由橢圓,求得兩焦點(diǎn),                                           (3分)

,又為一條漸近線

, 解得:                                                     (5分)

                                                    (6分)

②設(shè),則                                                      (7分)

      

?                             (9分)

,  ?              (10分)

                                                (11分)

  ?

?                                        (13分)

    <rt id="q2mao"></rt>

      單減區(qū)間為[]        (6分)

     

    ②(i)當(dāng)                                                      (8分)

    (ii)當(dāng),

    ,  (),,

    則有                                                                     (10分)

                                                   (11分)

      在(0,1]上單調(diào)遞減                     (12分)

                                                     (13分)

    20.解:①       

                                                            (2分)

    從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

      即                                (4分)

     

       即………………※              (6分)

    當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

    當(dāng)n=2時(shí),由※得:                                                 (8分)

    當(dāng)n=3時(shí),由※得:                                                 (9分)

    當(dāng)

        (

                                              (11分)

                             (12分)

    綜上分析可知,滿足條件的實(shí)數(shù)c不存在.                                    (13分)

    21.解:①設(shè)過A作拋物線的切線斜率為K,則切線方程:

                                                                    (2分)

        即

                                                                                                       (3分)

    ②設(shè)   又

         

                                                             (4分)

    同理可得 

                                                    (5分)

    又兩切點(diǎn)交于  ,

                                   (6分)

    ③由  可得:

     

                                                    (8分)

                      (9分)

     

    當(dāng) 

    當(dāng) 

                                                         (11分)

    當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                           (12分)

    22.①證明:由   

      即證

      ()                                    (1分)

    當(dāng)  

          即:                          (3分)

      ()    

    當(dāng)   

       

                                                             (6分)

    ②由      

    數(shù)列

                                                  (8分)

    由①可知, 

                        (10分)

    由錯(cuò)位相減法得:                                       (11分)

                                        (12分)

     

     


    同步練習(xí)冊答案