題目列表(包括答案和解析)
(本小題8分)
若,求證:
不可能都是奇數(shù)
(本小題8分)
若,求證:
不可能都是奇數(shù)
(本小題8分)規(guī)定記號“※”表示一種運(yùn)算,即※
,
記※
.
(1)求函數(shù)的表達(dá)式和它的最小正周期;
(2)若函數(shù)在
處取到最大值,求
的值
(本小題8分)
已知且
,求
與
的夾角
的取值范圍.
(本小題8分)已知數(shù)列的前
項(xiàng)和為
,點(diǎn)
在直線
上;數(shù)列
滿足
,且
,它的前9項(xiàng)和為153.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和為
.
一、選擇題(本大題共10小題,每小題5分,共50分,每題只有一個正確選項(xiàng))
題號
1
2
3
4
5
6
7
8
9
10
答案
C
A
B
A
D
B
D
A
C
D
二、填空題(本大題共有5小題,每小題4分,共20分)
11. (1,0) 12. 1/2 13./9 14.
(-1/4,1) 15.
三、解答題(本大題共有5小題,滿分50分,解答應(yīng)寫出文字說明證明過程或演算步驟)
16.(本小題滿分8分)
解: 因?yàn)?sub>,所以-2<m<2;……………………………………1分
若方程無實(shí)根,則
, ……2分
即, 所以q:1<m<3. ……………………………………3分
因?yàn)椹謕為假,則p為真,又因?yàn)閜∧q為假,則q為假. ……………………5分
所以……………………7分
所以-2<m≤1.故實(shí)數(shù)的取值范圍為
. ………………………………8分
17.(本小題滿分10分)
解:(1)將代入
,消去
,
整理得. ………………………………2分
因?yàn)橹本與橢圓
相交于
兩個不同的點(diǎn),
所以,……………………4分
解得.所以
的取值范圍為
.………………………6分
(2) 解法1:設(shè),由⑴知
……7分
∵弦的中點(diǎn)
的橫坐標(biāo)是-
,∴
…………………8分
∴b=1∈……10分
解法2:設(shè),
由
,
作差得 (*)
因?yàn)?sub>,
…………………8分
代入(*)得 ∴中點(diǎn)
的縱坐標(biāo)是
,
代入得b=1∈
……10分
18.(本小題滿分10分)
解(1) ∵=
-
=
-
=(-2,-1,2),
∵∥
∴ 設(shè)
………2分
∴=
∴t=±1, …………………4分
∴或
………………………………5分
(2) k+
=(k-1,k,2),k
-2
=(k+2,k,-4)………………………………6分
又(k+
)⊥(k
-2
) 所以 (k
+
)?(k
-2
)=0…………………7分
∴(k-1,k,2)?(k+2,k,-4)=…………………………9分
∴或
………………………………10分
19.(本小題滿分10分)
方法一:證:(Ⅰ)在Rt△BAD中,AD=2,BD=,
∴AB=2,
ABCD為正方形,因此BD⊥AC. ∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA
又∵PA∩AC=A ∴BD⊥平面PAC. ………………………………3分
解:(Ⅱ)作AH⊥PB于H,連結(jié)DH,∵PA⊥AD,AB⊥AD,∴DA⊥平面PAB,∴DH⊥PB,∴∠AHD為二面角A-PB-D的平面角. ……………………………5分
又∵PA=AB,∴H是PB中點(diǎn),∴AH=,DH=
∴cos∠AHD=AH/DH=
/
=
.∴二面角A-PB-D的余弦值是
………………………………7分
(Ⅲ)∵PA=AB=AD=2,∴PB=PD=BD=
,設(shè)C到面PBD的距離為d,
由
,有
,
即,
得 ………………………………10分
方法二:證:(Ⅰ)建立如圖所示的直角坐標(biāo)系,
則A(0,0,0)、D(0,2,0)、P(0,0,2).
在Rt△BAD中,AD=2,BD=,
∴AB=2.∴B(2,0,0)、C(2,2,0),
∴ ……………………………1分
∵,即BD⊥AP,BD⊥AC,又AP∩AC=A,
∴BD⊥平面PAC. ………………………………3分
解:(Ⅱ)由(Ⅰ)得.
設(shè)平面PBD的法向量為,則
,
即,∴
故平面PBD的法向量可取為
……5分
∵DA⊥平面ABCD,∴為平面PAD的法向量. ………………6分
設(shè)二面角A-PB-D的大小為q,依題意可得,∴二面角A-PB-D的余弦值是
.…………7分
(Ⅲ)∵,又由(Ⅱ)得平面PBD的法向量為
.…………8分
∴C到面PBD的距離為 ………………10分
20、(本小題滿分12分)
(1)設(shè)N(x,y),由題意“過點(diǎn)作
交
軸于點(diǎn)
,點(diǎn)M關(guān)于點(diǎn)P的對稱點(diǎn)是
”得
………………2分
∴=(-x,-
),
=(1,-
)
……………………………4分
由?
=0得
……………………………5分
(2)設(shè)L與拋物線交于點(diǎn),
則由,得
,
……………………………6分
由點(diǎn)A、B在拋物線上有
,故
………7分
當(dāng)L與X軸垂直時,則由,得
,
不合題意,故L與X軸不垂直。 ………………………… ……8分
可設(shè)直線L的方程為y=kx+b(k≠0)
又由,
,得
所以
………………………………10分
,因?yàn)?sub>
所以 96<<480
………………………………11分
解得直線L的斜率取值范圍為(-1,-)∪
(
,1)………………………………12分
(其他方法酌情給分)
命題學(xué)校:瑞安四中(65531798) 命題人:薛孝西(13967706784)
審核學(xué)校:洞頭一中(63476763) 審核人:陳 。13968901086)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com