復習:(1)對數(shù)的定義 .其中 a 與 N的取值范圍, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數(shù)a的取值范圍;
(2)設實數(shù)f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數(shù)的底)的大小,并證明.

查看答案和解析>>

(2013•青島一模)若任意直線l過點F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C于兩個不同的點A,B過點A,BC,兩切線交于點M
(Ⅰ)證明:點M縱坐標是一個定值,并求出這個定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實數(shù)a取值范圍;
(Ⅲ)求證:
2ln2
22
+
2ln3
32
+
2ln4
42
+…+
2ln
n2
n-1
e
,(其中e自然對數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

已知函數(shù)f(x)=x3+x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數(shù)a的取值范圍;
(2)設實數(shù)f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設H(x)=[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數(shù)的底)的大小,并證明.

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學公式x3+數(shù)學公式x2+(a2-3a)x-2a
(1)如果對任意x∈(1,2],f'(x)>a2恒成立,求實數(shù)a的取值范圍;
(2)設實數(shù)f(x)的兩個極值點分別為x1x2判斷①x1+x2+a②x12+x22+a2③x13+x23+a3是否為定值?若是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a)并求出g(a)的最小值;
(3)對于(2)中的g(a),設H(x)=數(shù)學公式[g(x)-27],m,n∈(0,1)且m≠n,試比較|H(m)-H(n)|與|em-en|(e為自然對數(shù)的底)的大小,并證明.

查看答案和解析>>

若任意直線l過點F(0,1),且與函數(shù)數(shù)學公式的圖象C于兩個不同的點A,B過點A,BC,兩切線交于點M
(Ⅰ)證明:點M縱坐標是一個定值,并求出這個定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實數(shù)a取值范圍;
(Ⅲ)求證:數(shù)學公式數(shù)學公式,(其中e自然對數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>


同步練習冊答案