題目列表(包括答案和解析)
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分。有時可用函數(shù)
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(shù)(),表示對該學科知識的掌握程度,正實數(shù)a與學科知識有關(guān)。
(1) 證明:當時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,。當學習某學科知識6次時,掌握程度是85%,請確定相應(yīng)的學科。
(本題滿分14分)本題共有2個小題,第1小題滿分7分,第2小題滿分7分.
已知△的周長為,且.
。1)求邊長的值;
。2)若(結(jié)果用反三角函數(shù)值表示).
(本題滿分14分)本題共有2個小題,第1小題滿分8分,第2小題滿分6分.
已知函數(shù), .
(1)若,求函數(shù)的值;
(2)求函數(shù)的值域.
(本題滿分14分)本題共有2個小題,每小題滿分各7分.
如圖,在四棱錐中,底面為直角梯形,,垂直于底面,,分別為的中點.
(1)求證:;
(2)求與平面所成的角.
(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(shù)(),表示對該學科知識的掌握程度,正實數(shù)a與學科知識有關(guān).
(1) 證明:當時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗,學科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,
.當學習某學科知識6次時,掌握程度是85%,請確定相應(yīng)的學科.
說明
1,本解答列出試題的一種或幾種解法,如果考生的解法與所列解法不同.可參照解答中評分標準的精神進行評分.
2.評閱試卷,應(yīng)堅持每題閱到底,不要因為考生的解答中出現(xiàn)錯誤而中斷對該題的評閱,當考生的解答在某一步出現(xiàn)錯誤,影響了后繼部分,但該步以后的解答未改變這一題的內(nèi)容和難度時,可視影響程度決定后面部分的給分,這時原則上不應(yīng)超過后面部分應(yīng)給分數(shù)之半,如果有較嚴重的概念性錯誤,就不給分.
一、(第1題至第12題)
1. 2.x=0 3.x+2y-4=0 4. 5.
6. 7.3 8. 9. 10.
11. 12.-1080
二、(第13題至16題)
13.A 14.B 15.B 16.C
三、(第17題至第22題)
17.[解法一]由題意AB//CD,是異面直線BC1與DC所成的角.
又在Rt△ACC1中,可得AC1=3.
在梯形ABCD中,過C作CH//AD交AB于H,
得
又在中,可得,
在
∴異而直線BC1與DC所成角的大小為
[解法二]如圖,以D為坐標原點,分別以AD、DC、DD1所在直線為x、y、z軸建立直
角坐標系.
所成的角為,
則
∴異面直線BC1與DC所成角的大小為
18.[證明]原方程化簡為
設(shè) 、,代入上述方程得
將(2)代入(1),整理得
無實數(shù)解,∴原方程在復數(shù)范圍內(nèi)無解.
19.[解](1)由已知可得點A(-6,0),F(xiàn)(4,0)
設(shè)點P的坐標是,由已知得
由于
(2)直線AP的方程是
設(shè)點M的坐標是(m,0),則M到直線AP的距離是,
于是
橢圓上的點到點M的距離d有
由于
20.解:(1)設(shè)中低價房面積形成數(shù)列,由題意可知是等差數(shù)列,
其中a1=250,d=50,則
令 即
∴到2013年底,該市歷年所建中低價房的累計面積將首次不少于4750萬平方米.
(2)設(shè)新建住房面積形成數(shù)列{bn},由題意可知{bn}是等比數(shù)列,
其中b1=400,q=1.08, 則bn=400?(1.08)n-1
由題意可知
有250+(n-1)50>400 ? (1.08)n-1 ? 0.85.
由計算器解得滿足上述不等式的最小正整數(shù)n=6,
∴到2009年底,當年建造的中低價房的面積占該年建造住房面積的比例首次大于85%.
21.解(1)
(2)當
若其中等號當x=2時成立,
若其中等號當x=0時成立,
∴函數(shù)
(3)[解法一]令
則
于是
[解法二]令,
則
于是
22.[解](1)設(shè)點,A0關(guān)于點P1的對稱點A1的坐標為
A1關(guān)于點P2的對稱點A2的坐標為,所以,
(2)[解法一]的圖象由曲線C向右平移2個單位,再向上平移
4個單位得到.
因此,基線C是函數(shù)的圖象,其中是以3為周期的周期函數(shù),且當
[解法二]設(shè)
若
當
(3)
由于,
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com