查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設,

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一 選擇題

(1)B     (2)C     (3)B     (4)B     (5)D    (6)A

(7)A     (8)C     (9)D     (10)C    (11)B   (12)C

二 填空題

(13)     (14)     (15)   (16)1

三、解答題

(17)本小題主要考查指數(shù)和對數(shù)的性質(zhì)以及解方程的有關知識. 滿分12分.

解:

   

    (無解). 所以

(18)本小題主要考查同角三角函數(shù)的基本關系式、二倍角公式等基礎知識以及三角恒等變形的能力. 滿分12分.

解:原式

因為 

所以   原式.

因為為銳角,由.

所以  原式

因為為銳角,由

所以   原式

(19)本小題主要考查等差數(shù)列的通項公式,前n項和公式等基礎知識,根據(jù)已知條件列方程以及運算能力.滿分12分.

解:設等差數(shù)列的公差為d,由及已知條件得

, ①

     ②

由②得,代入①有

解得    當舍去.

因此 

故數(shù)列的通項公式

(20)本小題主要考查把實際問題抽象為數(shù)學問題,應用不等式等基礎知識和方法解決問題的能力. 滿分12分.

解:設矩形溫室的左側邊長為a m,后側邊長為b m,則

        蔬菜的種植面積

       

         

        所以

        當

        答:當矩形溫室的左側邊長為40m,后側邊長為20m時,蔬菜的種植面積最大,最大種植面積為648m2.

(21)本小題主要考查兩個平面垂直的性質(zhì)、二面角等有關知識,以有邏輯思維能力和空間想象能力. 滿分12分.

  • E

         因為PA=PC,所以PD⊥AC,

     又已知面PAC⊥面ABC,

        D

         因為PA=PB=PC,

         所以DA=DB=DC,可知AC為△ABC外接圓直徑,

         因此AB⊥BC.

        (2)解:因為AB=BC,D為AC中點,所以BD⊥AC.

              又面PAC⊥面ABC,

              所以BD⊥平面PAC,D為垂足.

              作BE⊥PC于E,連結DE,

              因為DE為BE在平面PAC內(nèi)的射影,

              所以DE⊥PC,∠BED為所求二面角的平面角.

              在Rt△ABC中,AB=BC=,所以BD=.

              在Rt△PDC中,PC=3,DC=,PD=,

              所以

              因此,在Rt△BDE中,,

              ,

              所以側面PBC與側面PAC所成的二面角為60°.

        (22)本小題主要考查直線和橢圓的基本知識,以及綜合分析和解題能力. 滿分14分.

        解:(1)由題設有

        設點P的坐標為(),由,得,

        化簡得       ①

        將①與聯(lián)立,解得 

        所以m的取值范圍是.

        (2)準線L的方程為設點Q的坐標為,則

           ②

        代入②,化簡得

        由題設,得 ,無解.

        代入②,化簡得

        由題設,得

        解得m=2.

        從而得到PF2的方程


        同步練習冊答案

        <center id="s6yhc"></center>