證法三:(i)當(dāng)n=1時.不等式成立, 查看更多

 

題目列表(包括答案和解析)

(1)設(shè)a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當(dāng)n=4時,求
a1d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>

(1)設(shè)a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0。若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列。
(i)當(dāng)n=4時,求的數(shù)值;
(ii)求n的所有可能值。
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來順序)都不能組成等比數(shù)列。

查看答案和解析>>

(1)設(shè)a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當(dāng)n=4時,求的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>

(1)設(shè)a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當(dāng)n=4時,求
a1
d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>

(1)設(shè)a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當(dāng)n=4時,求的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>


同步練習(xí)冊答案