已知函數(shù)f(x)=2sin x (sin x+cos x).(Ⅰ)求函數(shù)f(x)的最小正周期和最大值, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

已知函數(shù)f(x)=x-ax+(a-1),。

(1)討論函數(shù)的單調(diào)性;        

(2)證明:若,則對任意x,x,xx,有。

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f (x)的定義域為R,對任意的x,x都滿足f (x+x)=f (x)+f (x),當x>0時,f (x)>0.(1)試判斷f (x)的奇偶性.(2)試判斷f (x)的單調(diào)性,并證明.(3)若f (cos2θ-3)+f (4m-2mcosθ)>0對所有的θ∈[0,]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f (x) = a() + b

(1)當a = 1時,求f (x)的單調(diào)遞減區(qū)間;(2)當a<0時,f (x)在[0,]上的值域是[2,3],求ab的值.

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減.

(1)求a的值;

(2)記g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3個元素,求b的取值范圍.

查看答案和解析>>

(本小題滿分12分)

已知函數(shù)f(x)=x2ax+b (a,b∈R)的圖像經(jīng)過坐標原點,且,數(shù)列{}的前n項和=f(n)(n∈N*).

(Ⅰ) 求數(shù)列{}的通項公式;(Ⅱ)若數(shù)列{}滿足+ = ,求數(shù)列{}的前n項和.

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分60分.

(1)B      (2)D     (3)D      (4)B      (5)B       (6)C

(7)B      (8)C     (9)D      (10)C     (11)B      (12)A

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分16分.

(13)      (14)6,30,10    (15)120      (16)①④⑤

三、解答題:

(17)本小題主要考查三角函數(shù)的基本性質(zhì)和恒等變換的基本技能,考查畫圖的技能,滿分12分.

解(I)

 

     

         所以函數(shù)的最小正周期為π,最大值為.

(Ⅱ)由(Ⅰ)知

*

1

1

1

故函數(shù)在區(qū)間上的圖象是

 

 

 

 

 

 

 

(18)本小題主要考查線面關(guān)系和直棱柱等基礎知識,同時考查空間想像能力和推理運算能力,滿分12分.

解法一:(Ⅰ)連結(jié)BG,則BGBE在面ABD的射影,即∠EBGA1B與平面ABD所成的角.

FAB中點,連結(jié)EF、FC

D、E分別是CC1A1B的中點,又DC⊥平面ABC,

CDEF為矩形.

連結(jié)DF,G是△ADB的重心,

GDF

在直角三角形EFD中,

EF=1,∴   ……4分

于是

 ∴

A1B與平面ABC所成的角是

(Ⅱ)連結(jié)A1D,有

EDAB,EDEF,又EFABF

ED⊥平面A1AB

A1到平面AED的距離為h

則  

又    

∴ 

A1到平面AED的距離為

解法二: (Ⅰ)連結(jié)BG,則BGBE在面ABD的射影,即∠A1BGA1B與平面ABD所成的角.

如圖所示建立坐標系,坐標原點為O,設CA=2a,則 A(2a,0,0),B(0,2a,0),D(0,0,1),A1(2a,0,2),E(aa,1),

,

,解得 a=1.

,

A1B與平面ABD所成角是

(Ⅱ)由(Ⅰ)有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1).

,

,

ED⊥平面AA1E,又EDÌ平面AED,

∴ 平面AED⊥平面AA1E,又面AEDAA1EAE

∴ 點A1在平面AED的射影KAE上.

,

,即l+l+l-2=0,

解得

A1到平面AED的距離為

(19)本小題主要考查導數(shù)的概念和計算,應用導數(shù)研究函數(shù)性質(zhì)的方法及推理和運算能力.滿分12分.

解:

a>0,x>0時

f ¢(x)>0Ûx2+(2a-4)x+a2>0,

f ¢(x)<0Ûx2+(2a-4)x+a2<0.

(?)當a > 1時,對所有x > 0,有

x2+(2a-4)x+a2>0,

f ¢(x)>0,此時f(x)在(0,+∞)內(nèi)單調(diào)遞增.

(?)當a=1時,對x≠1,有

x2+(2a-4)x+a2>0,

f ¢(x)>0,此時f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)單調(diào)遞增.

又知函數(shù)f(x)在x=1處連續(xù),因此,函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增.

(?)當0<a<1時,令f ¢(x)>0,即

x2+(2a-4)x+a2>0,

解得,或

因此,函數(shù)f(x)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)也單調(diào)遞增.

f ¢(x)<0,即x2+(2a-4)x+a2 < 0,

解得

因此,函數(shù)f(x)在區(qū)間內(nèi)單調(diào)遞減.

 

(20)本小題考查離散型隨機變量分布列和數(shù)學期望等概念,考查運用概率知識解決實際問題的能力,滿分12分.

解:(Ⅰ)x,h的可能取值分別為3,2,1,0.

,

,

,

根據(jù)題意知x+h=3,所以

,

,

(Ⅱ);

因為 x +h=3,

所以

 

(21)本小題主要考查平面向量的概念和計算,求軌跡的方法,橢圓的方程和性質(zhì),利用方程判定曲線的性質(zhì),曲線與方程的關(guān)系等解析幾何的基本思想和綜合解題能力,滿分12分.

解:根據(jù)題設條件,首先求出點P坐標滿足的方程,據(jù)此再判斷是否存在兩定點,使得點P到兩定點距離的和為定值.

i=(1,0),c=(0,a),

c+li=(l,a),i-2lc=(1,-2la).

因此,直線OPAP的方程為

ly=axya=-2lax

消去參數(shù)l,得點P(x,y)的坐標滿足方程y(ya)=­-2a2x2

整理得  .      ①

因為a>0,所以得:

(?)當時,方程①是圓方程,故不存在合乎題意的定點EF;

(?)當時,方程①表示橢圓,焦點為合乎題意的兩個定點:

(?)當時,方程①也表示橢圓,焦點為合乎題意的兩個定點.

 

(22)本小題主要考查數(shù)列、等比數(shù)列的概念,考查數(shù)學歸納法,考查靈活運用數(shù)學知識分析問題和解決問題的能力,滿分14分.

(Ⅰ)證法一:(?)當n=1時,由已知a1=1-2a0,等式成立;

(?)假設當nkk≥1)等式成立,即

那么

,

也就是說,當nk+1時,等式也成立.

根據(jù)(?)和(?),可知等式對任何nN+成立.

證法二:如果設ana3n=-2(an-1a3n-1),

代入,可解出

所以是公比為-2,首項為的等比數(shù)列.

nN+),

(Ⅱ)解法一:由an通項公式

,

an>an-1nN+)等價于

nN+).      ①

(?)當n=2k-1,k=1,2,…時,①式即為

,

即為 .               ②

②式對k=1,2,…都成立,有

(?)當n=2kk=1,2,…時,①式即為

,

即為

③式對k=1,2,…都成立,有

.      ②

綜上,①式對任意nN+成立,有

a0的取值范圍為(0,).

解法二:如果an>an-1nN+)成立,特別取n=1,2有

a1a0=1-3a0>0,

a2a1=6a0>0,

因此 

下面證明當時,對任意nN+,有anan-1>0.

an通項公式

(?)當n=2k-1,k=1,2,…時,

=0.

(?)當n=2k,k=1,2,…時,

≥0.

a0的取值范圍為(0,).


同步練習冊答案