查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿(mǎn)分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿(mǎn)分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿(mǎn)分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分. 在每小題給出的四個(gè)選項(xiàng)中,選擇一個(gè)符合題目要求的選項(xiàng).

(1)C    (2)B    (3)D    (4)C     (5)B    (6)B   

(7)A    (8)C    (9)B    (10)D   (11)A    (12)B

二、填空題:本大題共4小題,每小題4分,共16分. 答案填在題中橫線上.

13. 如果一個(gè)二面角的兩個(gè)面與另一個(gè)二面角的兩個(gè)面分別垂直,則這兩個(gè)二面角相等或互補(bǔ)     假     14.   15. 0     16.

三、解答題:本大題共6小題,共74分. 解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

17. 解:(Ⅰ)………2分

………4分

………6分

 (II)

   ……8分

的圖象與x軸正半軸的第一個(gè)交點(diǎn)為  ………10分

所以的圖象、y軸的正半軸及x軸的正半軸三者圍成圖形的面積

=    …12分

18. 解:(Ⅰ)設(shè)搖獎(jiǎng)一次,獲得一、二、三、四、五等獎(jiǎng)的事件分別記為.

則其概率分別為……3分

設(shè)搖獎(jiǎng)一次支出的學(xué)習(xí)用品相應(yīng)的款項(xiàng)為,則的分布列為:

 

1

2

3

4

5

 

 

 

                                                  

.………6分

若捐款10元者達(dá)到1500人次,那么購(gòu)買(mǎi)學(xué)習(xí)用品的款項(xiàng)為(元),

除去購(gòu)買(mǎi)學(xué)習(xí)用品的款項(xiàng)后,剩余款項(xiàng)為(元),

故剩余款項(xiàng)可以幫助該生完成手術(shù)治療. ………8分

(II)記事件“學(xué)生甲捐款20元獲得價(jià)值6元的學(xué)習(xí)用品”為,則.

即學(xué)生甲捐款20元獲得價(jià)值6元的學(xué)習(xí)用品的概率為………12分

19. 以D為原點(diǎn),以DA、DC、DD1所在直線分別為x軸,z軸建立空間直角坐標(biāo)系D―xyz如圖,則有A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2). …  3分

(Ⅰ)證明:設(shè)則有所以,,∴平面;………6分

(II)解:

設(shè)為平面的法向量,

于是………8分

同理可以求得平面的一個(gè)法向量,………10分

  ∴二面角的余弦值為. ………12分

20. 解:(Ⅰ)對(duì)求導(dǎo)數(shù),得,切點(diǎn)是的切線方程是.…2分

當(dāng)時(shí),切線過(guò)點(diǎn),即,得;

當(dāng)時(shí),切線過(guò)點(diǎn),即,得.

所以數(shù)列是首項(xiàng),公比為的等比數(shù)列,

所以數(shù)列的通項(xiàng)公式為.………4分

(II)當(dāng)時(shí),數(shù)列的前項(xiàng)和=

同乘以,得=兩式相減,…………8分

=,

所以=.………12分

21.解:(Ⅰ)由于所以

………2分

,

當(dāng)a=2時(shí),

所以2-a≠0.

①     當(dāng)2-a>0,即a<2時(shí),的變化情況如下表1:

 

x

0

(0,2-a)

2-a

(2-a,+∞)

0

+

0

極小值

極大值

此時(shí)應(yīng)有f(0)=0,所以a=0<2;

②當(dāng)2-a<0,即a>2時(shí),的變化情況如下表2:

x

2-a

(2-a,0)

0

(0,+∞)

0

+

0

極小值

極大值

此時(shí)應(yīng)有

綜上可知,當(dāng)a=0或4時(shí),的極小值為0. ………6分

(II)若a<2,則由表1可知,應(yīng)有 也就是

設(shè)

由于a<2得

所以方程  無(wú)解. ………8分

若a>2,則由表2可知,應(yīng)有f(0)=3,即a=3. ………10分

綜上可知,當(dāng)且僅當(dāng)a=3時(shí),f(x)的極大值為3. ………12分

22. 解:(Ⅰ)由得,;……4分

由直線與圓相切,得,所以,。所以橢圓的方程是.……4分

(II)由條件知,,即動(dòng)點(diǎn)到定點(diǎn)的距離等于它到直線的距離,由拋物線的定義得點(diǎn)的軌跡的方程是.  ……8分

(III)由(2)知,設(shè),,所以,.

,得.因?yàn)?sub>,化簡(jiǎn)得,……10分

(當(dāng)且僅當(dāng),即時(shí)等號(hào)成立). ……12分    ,又

所以當(dāng),即時(shí),,故的取值范圍是.14分

 

 

 

 

 


同步練習(xí)冊(cè)答案