題目列表(包括答案和解析)
函數(shù)y=㏒(x﹥1)的反函數(shù)是
A.y= (x>0) B.y= (x<0) C.y= (x>0) D. .y= (x<0)
在平面直角坐標(biāo)系xOy中,設(shè)定點A(a,a),P是函數(shù)y=(x>0)圖象上一動點.若點P,A之間的最短距離為2,則滿足條件的實數(shù)a的所有值為 .
a>0且a≠1,x>y>0時,判斷下列式子是否正確.
(1)logax·logay=loga(x+y);
(2)logax-logay=loga(x-y);
(3)loga=logax÷logay;
(4)logaxy=logax-logay;
(5)(logax)n=nlogax;
(6)logax=-loga;
(7)=logax.
[分析] 根據(jù)對數(shù)的運(yùn)算律加以判斷即可.
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
已知函數(shù)f(x)=xlnx2 (x<-1)的導(dǎo)函數(shù)為g(x),則g(x)的反函數(shù)是 ( )
A.y=(x<2) B.y=(x>2) C.y=-(x>2) D.y=-(x<2)
一、選擇題:本大題考查基本概念和基本運(yùn)算,每小題5分,滿分60分.
(1)D (2)B (3)C (4)D (5)C (6)A (7)B (8)C (9)B (10)B
二、填空題:本大題考查基礎(chǔ)知識和基本運(yùn)算.每小題4分,滿分16分.
(11)10 (12) (13)理 , 文 (14)()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com