(2)若方程上有且僅有兩個(gè)不同實(shí)根.求實(shí)數(shù)m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

定義在R上的函數(shù)是奇函數(shù),當(dāng)且僅當(dāng)取得最大值。

   (1)求a、b的值;

   (2)若方程上有且僅有兩個(gè)不同實(shí)根,求實(shí)數(shù)m的取值

范圍。

查看答案和解析>>

(理)定義:若存在常數(shù)k,使得對(duì)定義域D內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個(gè)滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗(yàn)證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請(qǐng)找出所有的一次函數(shù)g(x),使得下列條件同時(shí)成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

(理科)定義在R上的函數(shù)f(x)=
x+b
ax2+1
(a,b∈R,a≠0)
是奇函數(shù),當(dāng)且僅當(dāng)x=1時(shí),f(x)取得最大值.
(1)求a、b的值;
(2)若方程f(x)+
mx
1+x
=0在區(qū)間(-1,1)
上有且僅有兩個(gè)不同實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(理科)定義在R上的函數(shù)f(x)=
x+b
ax2+1
(a,b∈R,a≠0)
是奇函數(shù),當(dāng)且僅當(dāng)x=1時(shí),f(x)取得最大值.
(1)求a、b的值;
(2)若方程f(x)+
mx
1+x
=0在區(qū)間(-1,1)
上有且僅有兩個(gè)不同實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知集合MD是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)k,使得對(duì)定義域D內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1,x2,均有|f(x1)-f(x2)|≤k|x1-x2|成立.
(Ⅰ) 當(dāng)D=R時(shí),f(x)=x是否屬于MD?說(shuō)明理由;
(Ⅱ) 當(dāng)D=[0,+∞)時(shí),函數(shù)數(shù)學(xué)公式屬于MD,求k的取值范圍;
(Ⅲ) 現(xiàn)有函數(shù)f(x)=sinx,是否存在函數(shù)g(x)=kx+b(k≠0),使得下列條件同時(shí)成立:
①函數(shù)g(x)∈MD;
②方程g(x)=0的根t也是方程f(x)=0的根,且g(f(t))=f(g(t));
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.若存在,求出滿足條件的k和b;若不存在,說(shuō)明理由.

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

<rp id="7tked"><meter id="7tked"></meter></rp>

1.3.5

第Ⅱ卷(非選擇題,共100分)

二、填空題

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答題

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在時(shí),

   

   

    在時(shí),為減函數(shù)

    從而的單調(diào)遞減區(qū)間為;…………(文8分)

   (2)(理科)  

    當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

    同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

   (3)當(dāng),變換過(guò)程如下:

    1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

    2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

    3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

   (其它的變換方法正確相應(yīng)給分)

17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    為直線B1C與平面ABC所成的角,即

    過(guò)點(diǎn)A作AM⊥BC于M,過(guò)M作MN⊥B1C于N,加結(jié)AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

    設(shè)AB=BB1=

    在Rt△B1BC中,BC=BB1

 

  

    即二面角B―B1C―A的正切值為 …………(文12分)

   (3)(理科)過(guò)點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

    ∠A1CH為直線A1C與平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

  ………………………………(6分)

   (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

  ……………………………………(12分)

   (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

  ………………………………………(6分)

   (2)可能的取值為0,3,6;則

  甲兩場(chǎng)皆輸:

  甲兩場(chǎng)只勝一場(chǎng):

        0

        3

        6

        P

         

          

        的分布列為

         

         

         

          …………………………(12分)

        19.解:(文科)(1)由

          函數(shù)的定義域?yàn)椋ǎ?,1)

          又

          

          …………………………………(6分)

           (2)任取、

          

          

          

          又

          ……(13分)

           (理科)(1)由

          

        又由函數(shù)

          當(dāng)且僅當(dāng)

          

          綜上…………………………………………………(6分)

           (2)

          

        ②令

        綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

        20.解:(1)的解集有且只有一個(gè)元素

          

          又由

          

          當(dāng)

          當(dāng)

             …………………………………(文6分,理5分)

           (2)         ①

            ②

        由①-②得

        …………………………………………(文13分,理10分)

           (3)(理科)由題設(shè)

               

               綜上,得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.……………………(理13分)

        21.解(1)

         ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

        當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

        整理得

         

        綜上可知:恒有.………………………………(文13分,理9分)

         


        同步練習(xí)冊(cè)答案
        <table id="7tked"><input id="7tked"><output id="7tked"></output></input></table>