14.已知函數(shù)f上是增函數(shù).且是偶函數(shù).則..的大小順序是 . 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)在(0,2)上是增函數(shù),且是偶函數(shù),則、、

大小順序是               (按從小到大的順序) .

查看答案和解析>>

已知函數(shù)f(x)在(-∞,+∞)上是增函數(shù),a、b∈R,對(duì)命題若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b)”.    
(1)寫出逆命題,判斷其真假,并證明你的結(jié)論;    
(2)寫出逆否命題,判斷其真假,并證明你的結(jié)論.

查看答案和解析>>

已知函數(shù)f(x)在R上是增函數(shù),A(0,-1)、B(3,1)是其圖象上兩點(diǎn),那么|f(x+1)|<1的解集的補(bǔ)集為(    )

A.(-1,2)                                     B.(1,4)

C.(-∞,-1)∪[4,+∞)                 D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),

且f(1)=2,f()=;

(1)確定函數(shù)的解析式;

(2)用定義證明f(x)在[1,+∞)上是增函數(shù);

第6頁(yè)(共6頁(yè))

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

已知函數(shù)f(x)=
1
a
-
1
x
(a>0)

(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)若f(x)的定義域、值域都是[
1
2
,2]
,求實(shí)數(shù)a的值;

查看答案和解析>>

 

一、選擇題:

(1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

(7)C     (8)A     (9)D    (10)B     (11)C    (12)B

 

二、填空題:

(13)2               (14)  (15)200  (16)②③ 

 

三、解答題

17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

(2)由,得(R),所以,      ……………  5分

所求反函數(shù)為( R).                …………………  7分

(3) ==-,所以是奇函數(shù).………  12分

 

18. (1)設(shè),則.        …………………  1分

由題設(shè)可得解得      ………………… 5分

所以.                                …………………  6分

(2) ,. ……  8分

列表:

 

 

 

                                                     …………………  11分

由表可得:函數(shù)的單調(diào)遞增區(qū)間為,       ………………  12分

19.(1)證明:設(shè),且,

,且.                    …………………  2分

上是增函數(shù),∴.        …………………  4分

為奇函數(shù),∴,                      

, 即上也是增函數(shù).         ………………  6分

(2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

上是增函數(shù).                       ……………………  7分

于是

 

.        …………  10分

∵當(dāng)時(shí),的最大值為

∴當(dāng)時(shí),不等式恒成立.                         ………………  12分

 

20. ∵AB=x, ∴AD=12-x.                                   ………………1分

,于是.         ………………3分

由勾股定理得   整理得    …………5分

因此的面積 .  ……7分

  得                                ………………8分

.                         ………………10分

當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),S有最大值  ……11分

答:當(dāng)時(shí),的面積有最大值             ………………12分

 

21. (1) h (x)                            …………………5分

   (2) 當(dāng)x≠1時(shí), h(x)= =x-1++2,                       ………………6分

      若 x > 1時(shí), 則 h (x)≥4,其中等號(hào)當(dāng) x = 2時(shí)成立               ………………8分

若x<1時(shí), 則h (x) ≤ 0,其中等號(hào)當(dāng) x = 0時(shí)成立               ………………10分

∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

 

22. (1)

切線PQ的方程             ………2分

   (2)令y=0得                           ………4分

 

解得 .                         ………6分

又0<t<6, ∴4<t<6,                                            ………7分

g (t)在(m, n)上單調(diào)遞減,故(m, n)              ………8分

(3)當(dāng)在(0,4)上單調(diào)遞增,

 

∴P的橫坐標(biāo)的取值范圍為.                               ………14分

 

 


同步練習(xí)冊(cè)答案