21.如圖.設F是橢圓的左焦點.直線l為其左準線.直線l與x軸交于點P.線段MN為橢圓的長軸.已知 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,ODABP是半圓弧上一點,

POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P。

(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼担笄C的方程;

(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

查看答案和解析>>

(本小題滿分13分)

如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,ODABP是半圓弧上一點,

POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P。

(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼担笄C的方程;

(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

 

查看答案和解析>>

(08年湖北卷理)(本小題滿分13分)

如圖,在以點O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點,

∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動點M的軌跡,且曲線C過點P.

(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線C的方程;

(Ⅱ)設過點D的直線l與曲線C相交于不同的兩點E、F.

若△OEF的面積不小于2,求直線l斜率的取值范圍.

查看答案和解析>>

(本小題滿分13分)如圖,拋物線的頂點在坐標原點,且開口向右,點A,B,C在拋物線上,△ABC的重心F為拋物線的焦點,直線AB的方程為.(Ⅰ)求拋物線的方程;(Ⅱ)設點M為某定點,過點M的動直線l與拋物線相交于P,Q兩點,試推斷是否存在定點M,使得以線段PQ為直徑的圓經過坐標原點?若存在,求點M的坐標;若不存在,說明理由.

查看答案和解析>>


(本小題共13分)
  如圖,在直角坐標系中,O為坐標原點,直線AB⊥x軸于點C,,動點M到直線AB的距離是它到點D的距離的2倍。
 。↖)求點M的軌跡方程;
 。↖I)設點K為點M的軌跡與x軸正半軸的交點,直線l交點M的軌跡于E,F(xiàn)兩點(E,F(xiàn)與點K不重合),且滿足,動點P滿足,求直線KP的斜率的取值范圍。
  

查看答案和解析>>

 

第Ⅰ卷(選擇題,共50分)

1―3  AAD  4(文)D(理)B  5(文)B(理)C 

1.3.5

第Ⅱ卷(非選擇題,共100分)

二、填空題

11.4   12.96  13.-3  14.(文)(理)

15.(文)   (理)

三、解答題

16.解:(1)

   

   

   

   

     …………(4分)

   (1)(文科)在時,

   

   

    在時,為減函數(shù)

    從而的單調遞減區(qū)間為;…………(文8分)

   (2)(理科)  

    當時,由得單調遞減區(qū)間為

    同理,當時,函數(shù)的單調遞減區(qū)間為…………(理8分)

   (3)當,變換過程如下:

    1°將的圖象向右平移個單位可得函數(shù)的圖象。

    2°將所得函數(shù)圖象上每個點的縱坐標擴大為原來的倍,而橫坐標保持不變,可得函數(shù)的圖象。

    3°再將所得圖象向上平移一個單位,可得的圖象……(12分)

   (其它的變換方法正確相應給分)

17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    又AC面ABC

    AC

    又

   

    又AC面B1AC

    …………(6分)

   (2)三棱柱ABC―A1B1C1為直三棱柱

    底面ABC

    為直線B1C與平面ABC所成的角,即

    過點A作AM⊥BC于M,過M作MN⊥B1C于N,加結AN。

    ∴平面BB1CC1⊥平面ABC

    ∴AM⊥平面BB1C1C

    由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

    設AB=BB1=

    在Rt△B1BC中,BC=BB1

  

    即二面角B―B1C―A的正切值為 …………(文12分)

   (3)(理科)過點A1作A1H⊥平面B1AC于H,連結HC,則

    ∠A1CH為直線A1C與平面B1AC所成的角

    由

   

  在Rt………………(理12分)

18.解:(文科)(1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和1個黑球,其概率為

  ………………………………(6分)

   (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5次獨立重復試難,故所求概率為

  ……………………………………(12分)

   (理科)(1)設用隊獲第一且丙隊獲第二為事件A,則

  ………………………………………(6分)

   (2)可能的取值為0,3,6;則

  甲兩場皆輸:

  甲兩場只勝一場:

  • <ins id="vam3t"><strike id="vam3t"></strike></ins>
    <em id="vam3t"><label id="vam3t"></label></em>
      <input id="vam3t"><strike id="vam3t"></strike></input>
      <ins id="vam3t"><small id="vam3t"></small></ins>
    • <kbd id="vam3t"><label id="vam3t"><dl id="vam3t"></dl></label></kbd>
    • 0

      3

      6

      P

       

        的分布列為

       

       

       

        …………………………(12分)

      19.解:(文科)(1)由

        函數(shù)的定義域為(-1,1)

        又

        

        …………………………………(6分)

         (2)任取、

        

        

        

        又

        ……(13分)

         (理科)(1)由

        

      又由函數(shù)

        當且僅當

        

        綜上…………………………………………………(6分)

         (2)

        

      ②令

      綜上所述實數(shù)m的取值范圍為……………(13分)

      20.解:(1)的解集有且只有一個元素

        

        又由

        

        當

        當

           …………………………………(文6分,理5分)

         (2)         ①

          ②

      由①-②得

      …………………………………………(文13分,理10分)

         (3)(理科)由題設

             

             綜上,得數(shù)列共有3個變號數(shù),即變號數(shù)為3.……………………(理13分)

      21.解(1)

       ………………………………(文6分,理4分)(2)(2)當AB的斜率為0時,顯然滿足題意

      當AB的斜率不為0時,設,AB方程為代入橢圓方程

      整理得

       

      綜上可知:恒有.………………………………(文13分,理9分)

       


      同步練習冊答案
      <nobr id="vam3t"><fieldset id="vam3t"></fieldset></nobr>