17.學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點,是圓錐曲線的左,右焦點.
(Ⅰ)以原點為極點、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點且平行于直線的直線的極坐標(biāo)方程;[來源:學(xué)科網(wǎng)ZXXK]
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點,求弦的長.

查看答案和解析>>

(本小題滿分12分)

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

 

喜愛打籃球

不喜愛打籃球

合計

男生

 

5

 

女生

10

 

[來源:學(xué)|科|網(wǎng)]

合計

 

 

50[]

已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為

(1)請將上面的列聯(lián)表補(bǔ)充完整

(2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;

(3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,

還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打羽毛球、喜歡打乒乓球、

喜歡踢足球的8位女生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選

中的概率.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

 

(本小題滿分12分)

某中學(xué)研究性學(xué)習(xí)小組,為了考察高中學(xué)生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機(jī)調(diào)查了 50名學(xué)生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨立性檢驗思想,指出有多大把握認(rèn)為中學(xué)生的作文水平與愛看課外書有關(guān)系?

高中學(xué)生的作文水平與愛看課外書的2×2列聯(lián)表

 

愛看課外書

不愛看課外書

總計

作文水平好

 

 

 

作文水平一般

 [來源:學(xué)?。網(wǎng)Z。X。X。K]

 

 

總計

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學(xué)生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學(xué)生也分別編號為1、2、3、4、5,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的兩名學(xué)生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

參考公式:,其中.

參考數(shù)據(jù):

[來源:學(xué)*科*網(wǎng)]

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

 

 

查看答案和解析>>

(本小題滿分12分)

某高校在2010年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下左圖所示.

(1)請先求出頻率分布表中①、②位置相應(yīng)數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?

(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官進(jìn)行面試,求:第4組至少有一名學(xué)生被考官A面試的概率?

組號

分組

頻數(shù)

頻率

第1組[來源:學(xué).科.網(wǎng)Z.X.X.K]

5

0.050

第2組

0.350

第3組

30

第4組

20

0.200

第5組

10

0.100

合計

100

1.00

 

 

[來源:學(xué)*科*網(wǎng)Z*X*X*K]

 

 

查看答案和解析>>

(本小題滿分12分)

        甲乙兩個學(xué)校高三年級分別為1100人,1000人,為了統(tǒng)計兩個學(xué)校在地區(qū)二模考試的數(shù)學(xué)科目成績,采用分層抽樣抽取了105名學(xué)生的成績,并作出了部分頻率分布表如下:(規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀)

甲校:

分組

[140,150]

頻數(shù)

2

3

10

15

15

x

3

1

乙校:

分組

[來源:學(xué)§科§網(wǎng)Z§X§X§K]

[140,150]

頻數(shù)

1

2

9

8

10

10

y

3

   (1)計算x,y的值,并分別估計兩上學(xué)校數(shù)學(xué)成績的優(yōu)秀率;

   (2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有97.5%的把握認(rèn)為兩個學(xué)校的數(shù)學(xué)成績有差異.

 

甲校

乙校

總計

優(yōu)秀

 

 

 

非優(yōu)秀

 

 

 

總計

 

 

 

附:

0.10

0.025

0.010

2.706

5.024

6.635

 

查看答案和解析>>

 

一、選擇題:BADBD   CCCCA   BB 

二、填空題:13.    14.-80    15.-4或-26    16.―

三、解答題

17.(本小題滿分10分)

 解:(1)         …………………………4分

                  ……………………6分

(2)       

 

(當(dāng)且僅當(dāng)a=c時取到等號)

 ,的面積的最大值為    

18.(本小題滿分12分)解:(1)甲取得的3個全是白球,則必勝,其概率為         

甲取得2個白球獲勝是乙取得1個白球3個黑球或4個黑球的情況下發(fā)生的,其概率為

  甲取1 個白球獲勝是在乙取得4 個黑球的情況下發(fā)生的,其概率為  由于這三個事件是互斥的,所以甲獲勝的概率為    (2)對于平局的情況,只有甲取1白2黑而乙取1白3黑或甲取2白1黑而乙取2白2黑時才發(fā)生,前者的概率為                                              

后者的概率為       所以甲乙成平局的概率為      19.(本小題滿分12分)

(1)證明:取中點,連接、.∵△是等邊三角形,∴,

       又平面⊥平面,∴⊥平面,∴在平面內(nèi)射影是,∵=2,,,,

       ∴△∽△,∴.又°,∴°,∴°,∴,由三垂線定理知 

(2)解:由是二面角的平面角  

       在Rt△中,,,∴,       °,∴二面角的大小是45°

(3)解:設(shè)到平面的距離距離是,則

,,

.又,

=,∴點到平面的距離距離是

20.(本小題滿分12分)解:(1)因為;故 當(dāng)時;;當(dāng)時,;滿足上式;所以;  

 又因為,所以數(shù)列為等差數(shù)列;

    由,,故;所以公差

     所以:; …………5分

(2)  ……… 6分

  …8分 由于  ∴單調(diào)遞增   ∴  ∴   ………10分

21.(1)  由題意得

 

由此可知

-1

3

+

0

0

+

極大值

極小值-9

取極大值

(2)上是減函數(shù)

上恒成立

作出不等式組表示的平面區(qū)域如圖

當(dāng)直線經(jīng)過點取最小值

有最小值

22.(本小題滿分12分)

解:(1)設(shè)橢圓方程由題意知

∴橢圓方程為…………………………4分

(2)證明:易求出橢圓的右焦點,…………………………………7分

設(shè)顯然直線的斜率存在,設(shè)直線的方程為代入方程并整理,得…

,

∴…所以,

    奪分有道:考試如何避免粗心失分

   ●很多高三學(xué)生都會抱怨自己太粗心,“這道題很簡單,只是我看錯了!鄙踔劣行┛忌鷷f,這次的數(shù)學(xué)模擬中有20多分是因為粗心失的分。其實這些問題并不僅僅是由于粗心,很可能是由于平時的學(xué)習(xí)不夠認(rèn)真,基本功不扎實。

    正確面對“粗心”失誤:  高考中基礎(chǔ)的內(nèi)容占了大多數(shù),也就是說大部分的題目都應(yīng)該在能力范圍之內(nèi),可是很少有人把自己會做的都做對了。往往高考得好的同學(xué)就是在考試中能嚴(yán)謹(jǐn)答題,少出失誤的同學(xué)?荚嚥粫o任何人解釋的機(jī)會,錯了就是錯了。再說白了一點,粗心也是自己能力不夠的表現(xiàn)。 所以考生在平時復(fù)習(xí)時就要重視這種問題。應(yīng)該分析為什么會看錯,是什么誤導(dǎo)了自己,以后怎么才能避免。不要只關(guān)心答案正確與否,而不分析思考的過程和方法。因為答案并不是平時復(fù)習(xí)的目的,如何正確地導(dǎo)向答案才是平時練習(xí)中需要知道的。 嚴(yán)謹(jǐn)?shù)膽B(tài)度還體現(xiàn)在書寫是否規(guī)范上。有經(jīng)驗的老師和同學(xué)部知道,書寫的規(guī)范與否,直接關(guān)系到考分的高低。特別是主觀題,會做甚至是做對了答案,也不一定在這道題上得滿分,原因就在于書寫不規(guī)范,缺少必要的步驟。筆者建議同學(xué)們可以參考往年高考試題的標(biāo)準(zhǔn)答案,其中有很嚴(yán)謹(jǐn)?shù)慕忸}步驟和書寫方式。這是我們需要掌握的。

    “粗心”失分的三大原因

    一是審題不清。有些同學(xué)在考試時發(fā)現(xiàn)某道題目與做多的某題類似,頓時興奮,還沒讀完題目,或者還沒充分掘出題目的隱含條件就急忙答題,而事實上,該題與以前的題目只是相似而己,有著本質(zhì)的區(qū)別,答案自然是南轅北轍。只有讀懂讀正確了題目,才有可能得到正確的分析過程.怎么讀好題目呢?我的經(jīng)歷告訴我,必須一個字一個字的讀,千萬不要遺漏,特別是數(shù)學(xué)符號,還有負(fù)號看漏了、單位弄混了、存在和任意混了、正整數(shù)條件看掉了等,所以,考試中千萬不要在“審題”這個環(huán)節(jié)上省時間,審題審?fù)噶耍忸}自然快而順手,仔細(xì)讀完一道題目或許只多花了幾分鐘,但如果審錯了題,損失的可不僅是時間,還有分?jǐn)?shù)。

    審題要注意根據(jù)題目中的有關(guān)特征去聯(lián)想,挖掘隱含條件,準(zhǔn)確地找出題目的關(guān)鍵詞與關(guān)鍵數(shù)據(jù),從中獲取盡可能多的信息,找有效的解題線索。

    二是運(yùn)算不認(rèn)真: 很多同學(xué)會說自己的難題都對了,簡單的題目反倒錯了。事實上,這跟答一題的態(tài)度有關(guān)。在遇到難題的時候,往往會對題目給予足夠重視,全神貫注、專心致志地去解答,答題過程、步驟也比較詳盡。計算過程,千萬不要跳躍某一步驟(除非你有萬無一失的把握),注意,這些內(nèi)容一般是在草稿紙上完成的,最后在解答過程中的書寫一般不要寫計算過程.所以你一定要把這些過程寫得明明白白,這為你回過頭來檢查提供的高效率高質(zhì)量的保障.在解簡單題目的時候,更不能掉以輕心,要穩(wěn)、要準(zhǔn),盡量不要花時間回頭檢查做二遍題,步驟也盡量不要省略不要跳,結(jié)果錯了一步也不容易發(fā)現(xiàn),導(dǎo)致最后答題失誤。

    這種現(xiàn)象也是平時學(xué)習(xí)不塌實的表現(xiàn)。平時不重視基礎(chǔ)題的復(fù)習(xí),好大喜功,專做難題、怪題,自認(rèn)為這就是能力的提高。其實,高考主要考的還是基礎(chǔ)知識,分值最多的也都在基礎(chǔ)題上,考生一定要在最后階段重點抓基礎(chǔ)題的復(fù)習(xí)。

    三是臨場緊張:有些考生在考場上總怕時間不夠,前面的題目還沒做好,就想著下一道題。前面的題太簡單了過不做,太難了做不出來也跳過不做。結(jié)果,東一榔頭西一棒,慌慌張張的,哪道題目都沒有好好地做完,出錯自然難免。

    這固然跟臨場發(fā)揮有關(guān),也跟平時做題習(xí)慣有關(guān)。很多同學(xué)在做題目的時候都有做一半的壞習(xí)慣,做了一個開頭,認(rèn)為自己會做了,就不做完整。長此以往,答題時就容易答不完全。

同學(xué)們在平時練習(xí)的是時候,要追求質(zhì),而不是量。不要忙著做很多題,而是要保證每道題目的總確性。

 


同步練習(xí)冊答案