(2)當(dāng).即.時(shí) 查看更多

 

題目列表(包括答案和解析)

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):
(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;
(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;
(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;
(4)初始時(shí)刻(即第0年),兔子數(shù)量有R0=100只,狐貍數(shù)量有F0=30只.
請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:
(1)列出兔子與狐貍的生態(tài)模型;
(2)求出Rn、Fn關(guān)于n的關(guān)系式;
(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):
(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;
(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;
(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;
(4)初始時(shí)刻(即第0年),兔子數(shù)量有R0=100只,狐貍數(shù)量有F0=30只.
請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:
(1)列出兔子與狐貍的生態(tài)模型;
(2)求出Rn、Fn關(guān)于n的關(guān)系式;
(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;(3)第n年時(shí),兔子數(shù)量用表示,狐貍數(shù)量用表示;(4)初始時(shí)刻(即第0年),兔子數(shù)量有只,狐貍數(shù)量有只。請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:

(1)列出兔子與狐貍的生態(tài)模型(、的關(guān)系式);

(2)求出、關(guān)于n的關(guān)系式;

(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由。

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):
(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;
(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;
(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;
(4)初始時(shí)刻(即第0年),兔子數(shù)量有R=100只,狐貍數(shù)量有F=30只.
請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:
(1)列出兔子與狐貍的生態(tài)模型;
(2)求出Rn、Fn關(guān)于n的關(guān)系式;
(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>

當(dāng)兔子和狐貍處于同一棲息地時(shí),忽略其他因素,只考慮兔子數(shù)量和狐貍數(shù)量的相互影響,為了簡(jiǎn)便起見(jiàn),不妨做如下假設(shè):(1)由于自然繁殖,兔子數(shù)每年增長(zhǎng)10%,狐貍數(shù)每年減少15%;(2)由于狐貍吃兔子,兔子數(shù)每年減少狐貍數(shù)的0.15倍,狐貍數(shù)每年增加兔子數(shù)的0.1倍;(3)第n年時(shí),兔子數(shù)量Rn用表示,狐貍數(shù)量用Fn表示;(4)初始時(shí)刻(即第0年),兔子數(shù)量有R0=100只,狐貍數(shù)量有F0=30只.請(qǐng)用所學(xué)知識(shí)解決如下問(wèn)題:

(1)列出兔子與狐貍的生態(tài)模型(Rn、Fn的關(guān)系式);

(2)求出Rn、Fn關(guān)于n的關(guān)系式;

(3)討論當(dāng)n越來(lái)越大時(shí),兔子與狐貍的數(shù)量是否能達(dá)到一個(gè)穩(wěn)定的平衡狀態(tài),說(shuō)明你的理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案