得分評卷人 查看更多

 

題目列表(包括答案和解析)

(2009江西卷文)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助.求:

(1) 該公司的資助總額為零的概率;

(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

(2009江西卷文)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助.求:

(1) 該公司的資助總額為零的概率;

(2)該公司的資助總額超過15萬元的概率.

查看答案和解析>>

(2009江西卷理)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額.

 (1) 寫出的分布列; (2) 求數(shù)學(xué)期望.          

查看答案和解析>>

(2009江西卷理)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額.

 (1) 寫出的分布列; (2) 求數(shù)學(xué)期望.          

查看答案和解析>>

(2009江西卷文)(本小題滿分12分)

某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助.求:

(1) 該公司的資助總額為零的概率;

(2)該公司的資助總額超過15萬元的概率..   

查看答案和解析>>

一、選擇題(4′×10=40分)

題號

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

   作根軸圖:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

   則的方程為: ………………………4′

為所求………………………6′

16.解:∵  則………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

當(dāng)且僅當(dāng):………………………5′

       亦:時取等號

所以:當(dāng)時,………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………6′

由弦長公式得:………………………8′

18.解①設(shè)雙曲線的實半軸,虛半軸分別為

則有:   ∴………………………1′

于是可設(shè)雙曲線方程為:  ①或 ②………………………3′

將點代入①求得:

將點代入②求得: (舍去) ………………………4′

,

∴雙曲線的方程為:………………………5′

②由①解得:,,,焦點在軸上………………………6′

∴雙曲線的準(zhǔn)線方程為:………………………7′

漸近線方程為: ………………………8′

19.解:①設(shè)為橢圓的半焦距,則,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又、………………………3′

………………………5′

從而

∴離心率………………………6′

②由拋物線的通徑

得拋物線方程為,其焦點為………………………7′

∴橢圓的左焦點

由①解得:

………………………8′

∴該橢圓方程為:………………………9′

③      

 

 


同步練習(xí)冊答案