題目列表(包括答案和解析)
(本小題滿分10分)
已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.(本小題滿分10分)已知A,B,C,分別是的三個(gè)角,向量
與向量垂直。w.w.w.k.s.5.u.c.o.m
(1)求的大。
(2)求函數(shù)的最大值。(本小題滿分10分)
已知的內(nèi)角、、所對(duì)的邊分別為、、,向量
,且∥,為銳角.
(Ⅰ)求角的大。
(Ⅱ)若,求的面積w.w.w.k.s.5.u.c1.C 2.C 3.B 4.A 5.C 6.C 7.D 8.C 9.D 10.B
1l.B 12.A
2.解析:
,∴選C.
3.解析:是增函數(shù)
故,即
又
,故選B.
4.解析:如圖作出可行域,作直線,平移直線至位置,使其經(jīng)過(guò)點(diǎn).此時(shí)目標(biāo)函數(shù)取得最大值(注意與反號(hào))
由得
,故選A
5.解析:設(shè)有人投中為事件,則,
故選C.
6.解析:展開(kāi)式中通項(xiàng);
由,得,故選C.
7.解析:
由得
,故選D.
8.略
9.解析:由得準(zhǔn)線方程,雙曲線準(zhǔn)線方程為
,解得,
,故選D.
10.解析:設(shè)正四面體的棱長(zhǎng)為2,取中點(diǎn)為,連接,則為與所成的角,在中
,故選B.
11.解析:
由題意,則,故選B.
12.解析:由已知,
為球的直么
,又,
設(shè),則
,
又由,解得
,故選A.
另法:將四面體置于正方休中.
正方體的對(duì)角線長(zhǎng)為球的直徑,由此得,然后可得.
二、填空題
13.3;解析:在上的投影是.
14.(0.2);解析:由,解得.
15.
解析:,
由余弦定理為鈍角
,即,
解得.
16.②③;
解析:容易知命題①是錯(cuò)的,命題②、③都是對(duì)的,對(duì)于命題④我們考查如圖所示的正方體,政棱長(zhǎng)為,顯然與為平面內(nèi)兩條距離為的平行直線,它們?cè)诘酌?sub>內(nèi)的射影、仍為兩條距離為的平行直線.但兩平面與卻是相交的.
三、
17.解:(1),
,
即,故.
(2)
由得.
設(shè)邊上的高為。則
.
18.(1)設(shè)甲、乙兩人同時(shí)參加災(zāi)區(qū)服務(wù)為事件,則.
(2)記甲、乙兩人同時(shí)參加同一災(zāi)區(qū)服務(wù)為事件,那么.
19.解:
(1)平面
∵二面角為直二面角,且,
平面 平面.
(2)(法一)連接交交于點(diǎn),連接是邊長(zhǎng)為2的正方形, ,
平面,由三垂線定理逆定理得
是二面角的平面角
由(1)平面,
.
在中,
∴在中,
故二面角等于.
(2)(法二)利用向量法,如圖以之中點(diǎn)為坐標(biāo)原點(diǎn)建立空間坐標(biāo)系,則
,
設(shè)平面的法向量分別為,則由
得,而平面的一個(gè)法向理
故所求二面角等于.
20.解:(1)由題設(shè),即
易知是首項(xiàng)為,公差為2的等差數(shù)列,
∴通項(xiàng)公式為,
(2)由題設(shè),,得是以公比為的等比數(shù)列.
由得.
21.解:(1)由題意,由拋物線定義可求得曲線的方程為.
(2)證明:設(shè)點(diǎn)、的坐標(biāo)分別為
若直線有斜率時(shí),其坐標(biāo)滿足下列方程組:
,
若沒(méi)有斜率時(shí),方程為.
又.
;又,
.
22.(1)解:方程可化為.
當(dāng)時(shí),,又,于是,解得,故.
(2)解:設(shè)為曲線上任一點(diǎn),由知曲線在點(diǎn)處的切線方程為,即.
令,得,從而得切線與直線的交點(diǎn)坐標(biāo)為
令,得,從而得切線與直線的交點(diǎn)坐標(biāo)為.所以點(diǎn)處的切線與直線所圍成的三角形面積為.故曲線上任一點(diǎn)處的切線與直線所圍成的三角形的面積為定值,此定值為6.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com