題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題(每小題5分,滿分60分)
1
2
3
4
5
6
7
8
9
10
11
12
D
C
D
B
B
A
C
C
A
D
A
D
二、填空題(每小題4分,滿分16分)
13.-6 14. 15. 16.②③
三、解答題(第17、18、19、20、21題各12分,第22題14分,共74分)
17.(I)
(Ⅱ)
函數(shù)的值域為
18.解:(I)記“甲回答對這道題”、“乙回答對這道題”、“丙回答對這道題”分別為事件
、、,則,且有即
(Ⅱ)由(1)
則甲、乙、丙三人中恰有兩人回答對該題的概率為:
19.解:法一
(I)設(shè)是的中點,連結(jié),
則四邊形為方形,,故,
即
又
平面
(Ⅱ)由(I)知平面,
又平面,,
取的中點,連結(jié)又,
則,取的中點,連結(jié)則
為二面角的平面角
連結(jié),在中,,
取的中點,連結(jié),,在中,
二面角的余弦值為
法二:
(I)以為原點,所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標系,則
又因為
所以,平面
(Ⅱ)設(shè)為平面的一個法向量。
由得
取,則又,
設(shè)為平面的一個法向量,由,,
得取取
設(shè)與的夾角為,二面角為,顯然為銳角,
,即為所求
20.解:(I)或
故的單調(diào)遞增區(qū)間是和
單調(diào)遞減區(qū)間是(0,2)
(Ⅱ)
在和遞增,在(-1,3)遞減。
有三個相異實根
21.解:(I)設(shè)的公差為,則:
(Ⅱ)當時,,由,得
當時,,
,即
是以為首項,為公比的等比數(shù)列。
(Ⅲ)由(Ⅱ)可知:
22.解:(I)設(shè)過與拋物線的相切的直線的斜率是,
則該切線的方程為:
由得
則都是方程的解,故
(Ⅱ)設(shè)
由于,故切線的方程是:
則
,同理
則直線的方程是,則直線過定點(0,2)
(Ⅲ)要使最小,就是使得到直線的距離最小,而到直線的距離
當且僅當即時取等號
設(shè)
由得,則
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com