已知雙曲線的中心在原點(diǎn).焦點(diǎn).在坐標(biāo)軸上.離心率且過(guò)點(diǎn).① 求此雙曲線方程,② 寫(xiě)出該雙曲線的準(zhǔn)線方程和漸近線方程. 得分評(píng)卷人 查看更多

 

題目列表(包括答案和解析)

已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為2,過(guò)其右焦點(diǎn)且傾斜角為45°的直線被雙曲線截得的弦MN的長(zhǎng)為6.
(Ⅰ)求此雙曲線的方程;
(Ⅱ)若直線l:y=kx+m與該雙曲線交于兩個(gè)不同點(diǎn)A、B,且以線段AB為直徑的圓過(guò)原點(diǎn),求定點(diǎn)Q(0,-1)到直線l的距離d的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為
2
且過(guò)點(diǎn)(4,-
10

(Ⅰ)求雙曲線方程;
(Ⅱ)若點(diǎn)M(3,m)在雙曲線上,求證:點(diǎn)M在以F1F2為直徑的圓上;
(Ⅲ)由(Ⅱ)的條件,求△F1MF2的面積.

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,準(zhǔn)線方程為x=±
1
2
,漸近線為y=±
3
x

(1)求雙曲線的方程;
(2)若A、B分別為雙曲線的左、右頂點(diǎn),雙曲線的弦PQ垂直于x軸,求直線AP與BQ的交點(diǎn)M的軌跡方程.

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),焦點(diǎn)x軸上,它的一條漸近線與x軸的夾角為α,且
π
4
<α<
π
3
,則雙曲線的離心率的取值范圍是(  )
A、(1,
2
)
B、(
2
,2)
C、(1,2)
D、(2,2
2
)

查看答案和解析>>

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1、F2在坐標(biāo)軸上,離心率為2,且過(guò)點(diǎn)(4,-).

(1)求此雙曲線方程;

(2)若直線系kx-y-3k+m=0(其中k為參數(shù))所過(guò)的定點(diǎn)M恰在雙曲線上,求證:

F1M⊥F2M.

查看答案和解析>>

一、選擇題(4′×10=40分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空題(4′×4=16分)

11.       12.          13.       14.

三、解答題(共44分)

15.①解:原不等式可化為:  ………………………2′

   作根軸圖:

 

 

 

                                                      ………………………4′

  

可得原不等式的解集為:  ………………………6′

②解:直線的斜率  ………………………2′

∵直線與該直線垂直

   則的方程為: ………………………4′

為所求………………………6′

16.解:∵  則………………………1′

∴有………………………3′

        ………………………4′

     ………………………5′

     

當(dāng)且僅當(dāng):………………………5′

       亦:時(shí)取等號(hào)

所以:當(dāng)時(shí),………………………7′

17.解:將代入中變形整理得:

………………………2′

首先………………………3′

設(shè)   

由題意得:

解得:(舍去)………………………6′

由弦長(zhǎng)公式得:………………………8′

18.解①設(shè)雙曲線的實(shí)半軸,虛半軸分別為

則有:   ∴………………………1′

于是可設(shè)雙曲線方程為:  ①或 ②………………………3′

將點(diǎn)代入①求得:

將點(diǎn)代入②求得: (舍去) ………………………4′

,

∴雙曲線的方程為:………………………5′

②由①解得:,,,焦點(diǎn)在軸上………………………6′

∴雙曲線的準(zhǔn)線方程為:………………………7′

漸近線方程為: ………………………8′

19.解:①設(shè)為橢圓的半焦距,則,

   ∵  ∴  ∴………………………1′

代入,可求得

  ∵  ∴

  又、………………………3′

,

………………………5′

從而

∴離心率………………………6′

②由拋物線的通徑

得拋物線方程為,其焦點(diǎn)為………………………7′

∴橢圓的左焦點(diǎn)

由①解得:

………………………8′

∴該橢圓方程為:………………………9′

③      

 

 


同步練習(xí)冊(cè)答案