題目列表(包括答案和解析)
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,,不等式 恒成立,求實(shí)數(shù)的取值范圍.
【解析】第一問利用的定義域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是
第二問中,若對(duì)任意不等式恒成立,問題等價(jià)于只需研究最值即可。
解: (I)的定義域是 ......1分
............. 2分
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是 ........4分
(II)若對(duì)任意不等式恒成立,
問題等價(jià)于, .........5分
由(I)可知,在上,x=1是函數(shù)極小值點(diǎn),這個(gè)極小值是唯一的極值點(diǎn),
故也是最小值點(diǎn),所以; ............6分
當(dāng)b<1時(shí),;
當(dāng)時(shí),;
當(dāng)b>2時(shí),; ............8分
問題等價(jià)于 ........11分
解得b<1 或 或 即,所以實(shí)數(shù)b的取值范圍是
已知
(1)求函數(shù)在上的最小值
(2)對(duì)一切的恒成立,求實(shí)數(shù)a的取值范圍
(3)證明對(duì)一切,都有成立
【解析】第一問中利用
當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,
第二問中,,則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立,
第三問中問題等價(jià)于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立
解:(1)當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增,當(dāng),即時(shí),,
…………4分
(2),則設(shè),
則,單調(diào)遞增,,,單調(diào)遞減,,因?yàn)閷?duì)一切,恒成立, …………9分
(3)問題等價(jià)于證明,,
由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時(shí)取得
設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時(shí)取得.從而對(duì)一切,都有成立
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com