題目列表(包括答案和解析)
在等差數列{an}中,a1=3,其前n項和為Sn,等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設數列{cn}滿足,求{cn}的前n項和Tn.
【解析】本試題主要是考查了等比數列的通項公式和求和的運用。第一問中,利用等比數列{bn}的各項均為正數,b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項公式故an=3+3(n-1)=3n, bn=3 n-1. 第二問中,,由第一問中知道,然后利用裂項求和得到Tn.
解: (Ⅰ) 設:{an}的公差為d,
因為解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因為……………8分
已知遞增等差數列滿足:,且成等比數列.
(1)求數列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數的最小值,并證明.
【解析】本試題主要考查了數列的通項公式的運用以及數列求和的運用。第一問中,利用設數列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設數列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,;當時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數學歸納法.
當時,,成立.
假設當時,不等式成立,
當時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調性證明.
要證
只要證 ,
設數列的通項公式, …………10分
, …………12分
所以對,都有,可知數列為單調遞減數列.
而,所以恒成立,
故的最小值為.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com