(2) 求與的值,(3) 求證:OM⊥ON 查看更多

 

題目列表(包括答案和解析)

已知橢圓的左焦點(diǎn)為F(-,0),離心率e=,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:,直線OM與ON的斜率之積為-,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.
(Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.

查看答案和解析>>

已知橢圓的左焦點(diǎn)為F(-,0),離心率e=,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:,直線OM與ON的斜率之積為-,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.
(Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b2
=1(a>b>o)
的左焦點(diǎn)為F(-
2
,0),離心率e=
2
2
,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.
(Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.

查看答案和解析>>

(2013•中山模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>o)
的左焦點(diǎn)為F(-
2
,0),離心率e=
2
2
,M、N是橢圓上的動(dòng)點(diǎn).
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)P滿足:
OP
=
OM
+2
ON
,直線OM與ON的斜率之積為-
1
2
,問:是否存在定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?,若存在,求出F1,F(xiàn)2的坐標(biāo),若不存在,說明理由.
(Ⅲ)若M在第一象限,且點(diǎn)M,N關(guān)于原點(diǎn)對(duì)稱,點(diǎn)M在x軸上的射影為A,連接NA 并延長(zhǎng)交橢圓于點(diǎn)B,證明:MN⊥MB.

查看答案和解析>>

設(shè)a、b是不共線的兩個(gè)非零向量,
(1)若
OA
=2a-b,
OB
=3a+b,
OC
=a-3b,求證:A、B、C三點(diǎn)共線.
(2)若8a+kb與ka+2b共線,求實(shí)數(shù)k的值;
(3)設(shè)
OM
=ma,
ON
=nb,
OP
=α a+β b,其中m、n、α、β均為實(shí)數(shù),m≠0,n≠0,若M、P、N三點(diǎn)共線,
求證:
α
m
+
β
n
=1.

查看答案和解析>>


同步練習(xí)冊(cè)答案