解:(Ⅰ)本小題只要能建立一個(gè)正確的數(shù)學(xué)模型即可給分(例如根據(jù)兩點(diǎn)得出直線方程等).下面利用excel給出幾個(gè)模型.供參考:(1)直線型: 查看更多

 

題目列表(包括答案和解析)

(2006•黃浦區(qū)二模)設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為
.
A
,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
.
A
(r>0)
,求r的最大值.

查看答案和解析>>

設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為數(shù)學(xué)公式,若圓數(shù)學(xué)公式,求r的最大值.

查看答案和解析>>

設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長}.
(1)畫出A所表示的平面區(qū)域;
(2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫出結(jié)果即可);
(3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為,若圓,求r的最大值.

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得

;

(2)當(dāng)時(shí),若,

求證:;

(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:

① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評(píng)分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時(shí),拋物線的焦點(diǎn)為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,不妨取;;

解:(1)拋物線的焦點(diǎn)為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;,

,

.

,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

 

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點(diǎn),且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>


同步練習(xí)冊答案