(2)求的值, 查看更多

 

題目列表(包括答案和解析)

已知x1,x2是方程x2-2x+a=0的兩個實數(shù)根,且x1+2x2=3-
2

(1)求x1,x2及a的值;
(2)x12-x22+a+x2求的值.

查看答案和解析>>

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

若直線l:y=x+3交x軸于點A,交y軸于點B.坐標原點O關(guān)于直線l的對稱點O′在反比例函數(shù)y=
k
x
的圖象上.
(1)求反比例函數(shù)y=
k
x
的解析式;
(2)將直線l繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<45°),得到直線l′,l′交y軸于點P,過點P作x軸的平行線,與上述反比例函數(shù)y=
k
x
的圖象交于點Q,當四邊形APQO′的面積為9-
3
3
2
時,求θ的值.

查看答案和解析>>

先從括號內(nèi)①②③④備選項中選出合適的一項,填在橫線上,將題目補充完整后再解答.
(1)如果a是關(guān)于x的方程x2+bx+a=0的根,并且a≠0,求
 
的值,①ab;②
b
a
;③a+b④a-b.
(2)已知7x2+5y2=12xy,且xy≠0,求
 
的值.①xy②
x
y
③x+y④x-y.

查看答案和解析>>

如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點D,O為AC的中點,OE⊥OB交BC于點E
(1)當
AC
AB
=2
時,求
AF
CE
的值.
(2)當
AC
AB
=1
時,
AF
CE
求的值(1,2問要寫出解答過程)
(3)當
AC
AB
=n
時,求
AF
CE
的值(直接寫出結(jié)果)

查看答案和解析>>

一、選擇題

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空題

11. ,     12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答題

17.

            


18

 

19.解:(1),,同理

(2)若平分,四邊形是菱形.

證明:,     四邊形是平行四邊形,

平行四邊形為菱形

 

20.解:(1)(每圖2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)當旋鈕開到36°附近時最省氣,當旋鈕開到90°時最省時.最省時和最省氣不可能同時做到.………………………………………………………………………………………8分

說明:第(3)問只要表達意思明確即可,方式和文字不一定如此表達.


注:最省氣的旋鈕位置在36°附近,接近0°~90°的黃金分割點0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如圖③,當時,設(shè)于點,連結(jié),

,,

,,????????????????????????????? 3分

,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.證明:(1),

        (2分)

             (3分)

(2)連結(jié)(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依題可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足為F. 則PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此時,C為PB中點,則t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵點A的坐標為(0,16),且AB∥x軸

∴B點縱坐標為16,且B點在拋物線

∴點B的坐標為(10,16)...............................1分

又∵點D、C在拋物線上,且CD∥x軸

∴D、C兩點關(guān)于y軸對稱

∴DN=CN=5...............................2分

∴D點的坐標為(-5,4)...............................3分

(2)設(shè)E點的坐標為(a,16),則直線OE的解析式為:..........................4分

∴F點的坐標為()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)連結(jié)PH,PM,PK

∵⊙P是△AND的內(nèi)切圓,H,M,K為切點

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

設(shè)⊙P的半徑為r,則 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步練習冊答案