在區(qū)間上為減函數(shù).求的取值范圍,的值域. 查看更多

 

題目列表(包括答案和解析)

(16分)已知函數(shù)的導(dǎo)數(shù)為. 記函數(shù) k為常數(shù)).

    (1)若函數(shù)f(x)在區(qū)間上為減函數(shù),求的取值范圍;

  (2)求函數(shù)f(x)的值域.

查看答案和解析>>

 已知函數(shù)f(x)=x+2ax+2,   x.

(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;

(2) 若y=f(x)在區(qū)間 上是單調(diào) 函數(shù),求實(shí)數(shù)  a的取值范圍.

 

查看答案和解析>>

(文)給出下列四個(gè)命題:

①若函數(shù)f(x)=a(x3-x)在區(qū)間()上為減函數(shù),則a>0;②函數(shù)f(x)=lg(ax+1)的定義域是{x|x>};③當(dāng)x>0且x≠1時(shí),有l(wèi)nx+≥2;④若M是圓(x-5)2+(y+2)2=34上的任意一點(diǎn),則點(diǎn)M關(guān)于直線y=ax-5a-2的對(duì)稱點(diǎn)M′也在該圓上.

所有正確命題的序號(hào)是___________.

查看答案和解析>>

函數(shù)f(x)對(duì)任意的實(shí)數(shù)m、n有f(m+n)=f(m)+f(n),且當(dāng)x>0時(shí)有f(x)>0.

(1)求證:f(x)在(-∞,+∞)上為增函數(shù);

(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.

查看答案和解析>>

已知函數(shù)f(x)=

(1)若a>1,則f(x)的定義域是____________;

(2)若f(x)在區(qū)間上是減函數(shù),則實(shí)數(shù)a的取值范圍是____________.

查看答案和解析>>

必做題部分

【填空題答案】

1.{2,4};       2.1-2i ;           3.6ec8aac122bd4f6e;         4.6ec8aac122bd4f6e;       5.7;

6.6ec8aac122bd4f6e;        7.6ec8aac122bd4f6e;            8.6ec8aac122bd4f6e;        9.17;           10.6ec8aac122bd4f6e

11.6;        12.6ec8aac122bd4f6e;         13.3;         14.18高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。

 

二、解答題:本大題共6小題,共90分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

15. (本題滿分14分)

某高級(jí)中學(xué)共有學(xué)生3000名,各年級(jí)男、女生人數(shù)如下表:

 

高一年級(jí)

高二年級(jí)

高三年級(jí)

女生

523

x

y

男生

487

490

z

已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級(jí)女生的概率是0.17.

(1)問高二年級(jí)有多少名女生?

(2)現(xiàn)對(duì)各年級(jí)用分層抽樣的方法在全校抽取300名學(xué)生,問應(yīng)在高三年級(jí)抽取多少

名學(xué)生?

【解】(1)由題設(shè)可知6ec8aac122bd4f6e,    所以x=510.       ………………………6分

    (2)高三年級(jí)人數(shù)為y+z=3000-(523+487+490+510)=990,………………9分

     現(xiàn)用分層抽樣的方法在全校抽取300名學(xué)生,應(yīng)在高三年級(jí)抽取的人數(shù)為:

6ec8aac122bd4f6e 名.                                  ………………………12分

     答:(1)高二年級(jí)有510名女生;(2)在高三年級(jí)抽取99名學(xué)生.……………14分

 

6ec8aac122bd4f6e16. (本題滿分14分)

如圖, ABCD為矩形,CF平面ABCD,DE平面ABCD

AB=4a,BC= CF=2a, PAB的中點(diǎn).

1)求證:平面PCF平面PDE;

2)求四面體PCEF的體積.

【證明】(1)因?yàn)?/sub>ABCD為矩形,AB=2BC, PAB的中點(diǎn),

所以三角形PBC為等腰直角三角形,∠BPC=45°.     …………………………2

同理可證∠APD=45°.

所以∠DPC=90°,即PCPD.                       …………………………3

DE平面ABCD,PC平面ABCD內(nèi),所以PCDE. ………………………4

因?yàn)?/sub>DE∩PD=D ,所以PC PDE .                  …………………………5

又因?yàn)?/sub>PC平面PCF內(nèi),所以平面PCF平面PDE.  …………………………7

【解】(2)因?yàn)镃F⊥平面ABCD,DE⊥平面ABCD,

所以DE//CF. 又DC⊥CF,

所以6ec8aac122bd4f6e              ……………………… 10分

在平面ABCD內(nèi),過P作PQ⊥CD于Q,則

PQ//BC,PQ=BC=2a.

因?yàn)锽C⊥CD,BC⊥CF,

所以BC⊥平面PCEF,即PQ⊥平面PCEF,

亦即P到平面PCEF的距離為PQ=2a.                  ………………………12分

6ec8aac122bd4f6e           ………………………14分

(注:本題亦可利用6ec8aac122bd4f6e求得)

 

17 . (本題滿分15分)

△ABC中,角A的對(duì)邊長(zhǎng)等于2,向量m=6ec8aac122bd4f6e,向量n=6ec8aac122bd4f6e.

(1)求m?n取得最大值時(shí)的角A的大;

(2)在(1)的條件下,求△ABC面積的最大值.

【解】(1)m?n=26ec8aac122bd4f6e6ec8aac122bd4f6e. …………………3分

因?yàn)?A+B+C6ec8aac122bd4f6e,所以B+C6ec8aac122bd4f6e-A,

于是m?n=6ec8aac122bd4f6e+cosA=-26ec8aac122bd4f6e=-26ec8aac122bd4f6e.……………5分

因?yàn)?sub>6ec8aac122bd4f6e,所以當(dāng)且僅當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e,即A=6ec8aac122bd4f6e時(shí),m?n取得最大值6ec8aac122bd4f6e.

故m?n取得最大值時(shí)的角A=6ec8aac122bd4f6e.                       …………………………7分

(2)設(shè)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,

由余弦定理,得 b2+c2-a2=2bccosA,                 …………………………9分

即bc+4=b2+c2≥2bc,                              ……………………… 11分

所以bc≤4,當(dāng)且僅當(dāng)b=c=2時(shí)取等號(hào).                ……………………… 12分

又SABC6ec8aac122bd4f6ebcsinA=6ec8aac122bd4f6ebc≤6ec8aac122bd4f6e.

當(dāng)且僅當(dāng)a=b=c=2時(shí),△ABC的面積最大為6ec8aac122bd4f6e.        ………………………15分

 

18. (本題滿分15分)

在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在x軸和y軸上(如圖),且

OC=1,OA=a+1(a>1),點(diǎn)D在邊OA上,滿足OD=a. 分別以O(shè)D、OC為長(zhǎng)、短半軸的

橢圓在6ec8aac122bd4f6e矩形及其內(nèi)部的部分為橢圓弧CD. 直線l:y=-x+b與橢圓弧相切,與AB交于

點(diǎn)E.

(1)求證:6ec8aac122bd4f6e;

(2)設(shè)直線l將矩形OABC分成面積相等的兩部分,

求直線l的方程;

(3)在(2)的條件下,設(shè)圓M在矩形及其內(nèi)部,

且與l和線段EA都相切,求面積最大的圓M

的方程.

【解】題設(shè)橢圓的方程為6ec8aac122bd4f6e.                    …………………………1分

6ec8aac122bd4f6e消去y得6ec8aac122bd4f6e …………………………2分

由于直線l與橢圓相切,故△=(-2a2b)24a2(1+a2) (b2-1)=0,

化簡(jiǎn)得6ec8aac122bd4f6e.          ①                        …………………………4分

(2)由題意知A(a+1,0),B(a+1,1),C(0,1),

于是OB的中點(diǎn)為6ec8aac122bd4f6e.                           …………………………5分

因?yàn)閘將矩形OABC分成面積相等的兩部分,所以l過點(diǎn)6ec8aac122bd4f6e,

6ec8aac122bd4f6e,亦即6ec8aac122bd4f6e.         ②          …………………………6分

由①②解得6ec8aac122bd4f6e,故直線l的方程為6ec8aac122bd4f6e    …………………………8分

(3)由(2)知6ec8aac122bd4f6e.

因?yàn)閳AM與線段EA相切,所以可設(shè)其方程為6ec8aac122bd4f6e.………9分

因?yàn)閳AM在矩形及其內(nèi)部,所以6ec8aac122bd4f6e      ④     ……………………… 10分

圓M與 l相切,且圓M在l上方,所以6ec8aac122bd4f6e,即6ec8aac122bd4f6e.

………………………12分

代入④得6ec8aac122bd4f6e6ec8aac122bd4f6e            ………………………13分

所以圓M面積最大時(shí),6ec8aac122bd4f6e,這時(shí),6ec8aac122bd4f6e.

故圓M面積最大時(shí)的方程為6ec8aac122bd4f6e ………………………15分

 

19. (本題滿分16分)

已知函數(shù)6ec8aac122bd4f6e的導(dǎo)數(shù)為6ec8aac122bd4f6e. 記函數(shù)

6ec8aac122bd4f6e6ec8aac122bd4f6e k為常數(shù)).

    (1)若函數(shù)f(x)在區(qū)間6ec8aac122bd4f6e上為減函數(shù),求6ec8aac122bd4f6e的取值范圍;

(2)求函數(shù)f(x)的值域.

【解】(1)因?yàn)閒(x)在區(qū)間6ec8aac122bd4f6e上為減函數(shù),

所以對(duì)任意的6ec8aac122bd4f6e6ec8aac122bd4f6e恒有6ec8aac122bd4f6e成立.

6ec8aac122bd4f6e恒成立. …………………………3分

因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e對(duì)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),恒成立.

6ec8aac122bd4f6e<1,所以6ec8aac122bd4f6e                    …………………………6分

(2)6ec8aac122bd4f6e.             …………………………7分

下面分兩種情況討論:

(1)當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e是關(guān)于x的增函數(shù),值域?yàn)?sub>6ec8aac122bd4f6e

…………………………9分

(2)當(dāng)6ec8aac122bd4f6e時(shí),又分三種情況:

①當(dāng)6ec8aac122bd4f6e時(shí),因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e6ec8aac122bd4f6e.

所以f(x)是減函數(shù),6ec8aac122bd4f6e.

6ec8aac122bd4f6e,

當(dāng)6ec8aac122bd4f6e,所以f(x)值域?yàn)?sub>6ec8aac122bd4f6e.     ………………………10分

②當(dāng)k=1時(shí),6ec8aac122bd4f6e

且f(x)是減函數(shù),故f(x)值域是6ec8aac122bd4f6e.               ………………………12分

③當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e是增函數(shù),6ec8aac122bd4f6e

6ec8aac122bd4f6e.

下面再分兩種情況:

(a)當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的唯一實(shí)根6ec8aac122bd4f6e,故6ec8aac122bd4f6e,

6ec8aac122bd4f6e是關(guān)于x的增函數(shù),值域?yàn)?sub>6ec8aac122bd4f6e

(b)當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的唯一實(shí)根6ec8aac122bd4f6e,

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e;當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e

所以f(x)6ec8aac122bd4f6e.

故f(x)的值域?yàn)?sub>6ec8aac122bd4f6e.                        ………………………15分

綜上所述,f(x)的值域?yàn)?sub>6ec8aac122bd4f6e;6ec8aac122bd4f6e6ec8aac122bd4f6e);

6ec8aac122bd4f6e6ec8aac122bd4f6e);6ec8aac122bd4f6e6ec8aac122bd4f6e).            ………………………16分

 

20.(本題滿分16分)

設(shè){an}是等差數(shù)列,其前n項(xiàng)的和為Sn.

(1)求證:數(shù)列6ec8aac122bd4f6e為等差數(shù)列;

(2)設(shè){an}各項(xiàng)為正數(shù),a1=6ec8aac122bd4f6e,a1≠a2,若存在互異正整數(shù)m,n,p滿足:①m+p=2n;

6ec8aac122bd4f6e. 求集合6ec8aac122bd4f6e的元素個(gè)數(shù);

(3)設(shè)bn=6ec8aac122bd4f6e(a為常數(shù),a>0,a≠1,a1≠a2),數(shù)列{bn}前n項(xiàng)和為Tn. 對(duì)于正整數(shù)c,

d,e,f,若c<d<e<f,且c+f=d+e, 試比較(Tc)-1+(Tf)-1與(Td)-1+(Te)-1的大小.

【證】(1){an}為等差數(shù)列,設(shè)其公差為6ec8aac122bd4f6e,則

6ec8aac122bd4f6e,于是6ec8aac122bd4f6e(常數(shù)),

故數(shù)列6ec8aac122bd4f6e是等差數(shù)列.                              …………………………3分

【解】(2)因?yàn)閧an}為等差數(shù)列,所以6ec8aac122bd4f6e是等差數(shù)列,

于是可設(shè)6ec8aac122bd4f6e為常數(shù)),從而6ec8aac122bd4f6e.

因?yàn)閙+p=2n,所以由6ec8aac122bd4f6e兩邊平方得

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,

亦即6ec8aac122bd4f6e,………………………4分

于是6ec8aac122bd4f6e,兩邊平方并整理得6ec8aac122bd4f6e,即6ec8aac122bd4f6e.                                  

 …………………………6分

因?yàn)閙≠p,所以6ec8aac122bd4f6e,從而6ec8aac122bd4f6e,而a1=6ec8aac122bd4f6e,所以6ec8aac122bd4f6e.

6ec8aac122bd4f6e.                                        …………………………7分

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e.

因?yàn)?5有4個(gè)正約數(shù),所以數(shù)對(duì)(x,y)的個(gè)數(shù)為4個(gè).

即集合6ec8aac122bd4f6e中的元素個(gè)數(shù)為4.  ………………………9分

(3)因?yàn)?sub>6ec8aac122bd4f6e(常數(shù)),

所以數(shù)列{bn}是正項(xiàng)等比數(shù)列.

因?yàn)閍1≠a2,所以等比數(shù)列{bn}的公比q≠1.               ………………………10分

(解法一)6ec8aac122bd4f6e  ①

6ec8aac122bd4f6e.       ②

因?yàn)?sub>6ec8aac122bd4f6e,所以要證②,只要證6ec8aac122bd4f6e,   ③…………………13分

而③6ec8aac122bd4f6e

6ec8aac122bd4f6e.    ④

④顯然成立,所以③成立,從而有6ec8aac122bd4f6e.…………………16分

(解法二)注意到當(dāng)n>m時(shí),6ec8aac122bd4f6e.       ……………………12分

于是6ec8aac122bd4f6e

6ec8aac122bd4f6e. ……………………14分

6ec8aac122bd4f6e,故6ec8aac122bd4f6e ……………………16分

(注:第(3)問只寫出正確結(jié)論的,給1分)

 

附加題部分

6ec8aac122bd4f6e21. (選做題)本大題包括A,B,C,D共4小題,請(qǐng)從這4題中選做2小題. 每小題10分,共20分.請(qǐng)?jiān)诖痤}卡上準(zhǔn)確填涂題目標(biāo)記. 解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,AB⊙O的直徑,弦BDCA的延長(zhǎng)線

相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.

求證: 6ec8aac122bd4f6e.

【證明】連結(jié)AD,因?yàn)锳B為圓的直徑,所以∠ADB=90°,

又EF⊥AB,∠EFA=90°,所以A、D、E、F四點(diǎn)共圓.

所以∠DEA=∠DFA.                                  …………………………10分

 

B. 選修4-2:矩陣與變換

已知6ec8aac122bd4f6e, 求矩陣B.

【解】設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e,      …………………………5分

6ec8aac122bd4f6e             ………………………10分

C. 選修4-4:坐標(biāo)系與參數(shù)方程.

在平面直角坐標(biāo)系xOy中,動(dòng)圓6ec8aac122bd4f6e6ec8aac122bd4f6eR)的

圓心為6ec8aac122bd4f6e ,求6ec8aac122bd4f6e的取值范圍..

【解】由題設(shè)得6ec8aac122bd4f6e6ec8aac122bd4f6e為參數(shù),6ec8aac122bd4f6eR).         …………………………5分

于是6ec8aac122bd4f6e,

所以 6ec8aac122bd4f6e.                              ………………………10分

 

D.選修4-5:不等式證明選講

已知函數(shù)6ec8aac122bd4f6e. 若不等式6ec8aac122bd4f6e對(duì)a¹0, a、bÎR恒成立,

求實(shí)數(shù)x的范圍.

【解】 由6ec8aac122bd4f6e|且a¹0得6ec8aac122bd4f6e.

又因?yàn)?sub>6ec8aac122bd4f6e,則有26ec8aac122bd4f6e.  …………………………5分

解不等式  6ec8aac122bd4f6e  得  6ec8aac122bd4f6e            ……………………… 10分

 

22. 必做題, 本小題10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

6ec8aac122bd4f6e如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱6ec8aac122bd4f6e中,P是側(cè)棱6ec8aac122bd4f6e

的一點(diǎn),6ec8aac122bd4f6e.

(1)試確定m,使直線AP與平面BDD1B1所成角為60º;

(2)在線段6ec8aac122bd4f6e上是否存在一個(gè)定點(diǎn)6ec8aac122bd4f6e,使得對(duì)任意的m,

6ec8aac122bd4f6e⊥AP,并證明你的結(jié)論.

【解】(1)建立如圖所示的空間直角坐標(biāo)系,則

A(1,0,0),  B(1,1,0),  P(0,1,m),C(0,1,0),  D(0,0,0),

B1(1,1,1),  D1(0,0,2).

所以6ec8aac122bd4f6e

6ec8aac122bd4f6e

又由6ec8aac122bd4f6e的一個(gè)法向量.

設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e所成的角為6ec8aac122bd4f6e,

6ec8aac122bd4f6e=6ec8aac122bd4f6e,解得6ec8aac122bd4f6e.

故當(dāng)

同步練習(xí)冊(cè)答案