A. B.2 C.4 D.8 查看更多

 

題目列表(包括答案和解析)

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為
1
-4
,點P(2,-1)在矩陣A對應(yīng)的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=
2
,曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

遞增等比數(shù)列中,(     )

A. B.2 C.4 D.8

查看答案和解析>>

A.選修4-1:幾何證明選講
如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點D,點E是AB的中點.
求證:DE是⊙O的切線.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值-1及其對應(yīng)的一個特征向量為,點P(2,-1)在矩陣A對應(yīng)的變換下得到點P′(5,1),求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(α為參數(shù)),求曲線C截直線l所得的弦長.
D.選修4-5:不等式選講
已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

A、B是拋物線C:y2=2px(p>0)上的兩個動點,F(xiàn)是焦點,直線AB不垂直于x軸且交x軸于點D.
(1)若D與F重合,且直線AB的傾斜角為
π
4
,求證:
OA
OB
p2
是常數(shù)(O是坐標(biāo)原點);
(2)若|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求拋物線C的方程.

查看答案和解析>>

.已知x,y取值如下表從所得的散點圖分析,y與x線性相關(guān)且,

則a等于(  )            

x

0

1

3

4

y

2.2

4.3

4.8

6.7

A.2.5        B.2.6        C.2.7          D.2.8

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空題(每題4分,共16分)

13、          14、        15、1     16、15

三、解答題(共74分)

17、(本小題滿分12分)

(1)

函數(shù)的最小正周期是

當(dāng)時,即時,函數(shù)有最大值1。

(2)由,得

當(dāng)時,取得,函數(shù)的單調(diào)遞減區(qū)間是

(3)

18、(本小題滿分12分)

(1)由題意知:,∴=1

①,∴當(dāng) n≥2時,

①-②得:

>0,∴,(n≥2且

是以=1為首項,d=1為公差的等差數(shù)列

=n

(2)

是以為首項,為公比的等比數(shù)列

,∴,

                        ①

           ②

①-②得

19、(本小題滿分12分)

(1)當(dāng)時,

上是增函數(shù)

上是增函數(shù)

∴當(dāng)時,

(2)上恒成立

上恒成立

上恒成立

上是減函數(shù),

∴當(dāng)時,

,

∴所求實數(shù)a的取值范圍為

20、(本小題滿分12分)

此時

,∴,∴

∴實數(shù)a不存在

21、(本小題滿分12分)

(1)若方程表示圓,則,∴

(2)設(shè)M、N的坐標(biāo)分別為、

,得

,∴,∴    ①

,得

代入①得

(3)設(shè)MN為直徑的圓的方程為,

∴所求圓的方程為

22、(本小題滿分14分)

(1)當(dāng)時,

設(shè)x為其不動點,則,即

或2,即的不動點是-1,2

(2)由

由題意知,此方程恒有兩個相異的實根

對任意的恒成立

,∴

(3)設(shè),則直線AB的斜率,∴

由(2)知AB中點M的坐標(biāo)為

又∵M(jìn)在線段AB的垂直平分線上,∴

(當(dāng)且僅當(dāng)時取等號)

∴實數(shù)b的取值范圍為

 

 


同步練習(xí)冊答案