①若則, ②若∥.∥則∥, 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)=(1+
3
tanx)cosx,0≤x<
π
2
,則f(x)的最大值為
 

查看答案和解析>>

設(shè)方程2x+x=4的根為x0,若x0∈(k-
1
2
,k+
1
2
),則整數(shù)k=
 

查看答案和解析>>

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
 

查看答案和解析>>

若等比數(shù)列{an}滿足:a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52=12,則a1-a2+a3-a4+a5的值是
 

查看答案和解析>>

若函數(shù)f(x)是冪函數(shù),且滿足
f(4)
f(2)
=4
,則f(
1
2
)
的值等于
 

查看答案和解析>>

一、選擇題(60分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

C

B

(C

D

D

A

B

 

C

B

 

二、填空題(20分)

13.  15    14.5 15.   16.

三、解答題(70分)

17.(1)   ,∴,∴

           (5分)

(2)     

,∴,∴

                                                         (理10分)

18. (1)記“甲恰好投進(jìn)兩球”為事件A,則           (6分)

(2)記“甲比乙多投進(jìn)兩球”,其中“恰好甲投進(jìn)兩球且乙未投進(jìn)”為事件,“恰好甲投進(jìn)三球且乙投進(jìn)一球”為事件,根據(jù)提議,、互斥,(理12分)

19.(1)                     (6分)

(2)                                               (文12分)

(3)                                     (理12分)

20.(1)設(shè)數(shù)列的公比為,則

                                                                         (文6分,理4分)

(2)由(1)可知

所以數(shù)列是一個(gè)以為首項(xiàng),1為公差的等差數(shù)列

                       (文12分,理8分)

(3)∵

∴當(dāng)時(shí),,即

  當(dāng)時(shí),,即

綜上可知:時(shí),時(shí),       (理12分)

21. ⑴由已知

     

     所求雙曲線C的方程為;

⑵設(shè)P點(diǎn)的坐標(biāo)為,M,N的縱坐標(biāo)分別為.

 

 

    

共線

同理

              

22.

(1)由題意得:

∴在;在;在

在此處取得極小值

由①②③聯(lián)立得:

                                                         (6分)

(2)設(shè)切點(diǎn)Q

過(guò)

,

求得:,方程有三個(gè)根。

需:

故:

因此所求實(shí)數(shù)的取值范圍為:                     (理12

 

 


同步練習(xí)冊(cè)答案