解析:依題意有.∴.即.∴.得.∴ 查看更多

 

題目列表(包括答案和解析)

一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

(1)多少小時后,蓄水池存水量最少?

(2)當蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當日出現(xiàn)這種情況的時間有多長?

【解析】第一問中(1)設小時后,蓄水池有水千噸.依題意,,即(小時)時,蓄水池的水量最少,只有1千噸

第二問依題意,   解得:

解:(1)設小時后,蓄水池有水千噸.………………………………………1分

依題意,…………………………………………4分

,即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

(2)依題意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,當天有8小時會出現(xiàn)供水緊張的情況

 

查看答案和解析>>

已知,函數(shù)

(1)當時,求函數(shù)在點(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數(shù)在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設,

求導,得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實數(shù)的取值范圍是(

 

查看答案和解析>>

甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發(fā)的同時,乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時。

⑴求出發(fā)小時時兩船相距多少海里?

⑴   兩船出發(fā)后多長時間相距最近?最近距離為多少海里?

【解析】第一問中根據(jù)時間得到出發(fā)小時時兩船相距的海里為

第二問設時間為t,則

利用二次函數(shù)求得最值,

解:⑴依題意有:兩船相距

答:出發(fā)3小時時兩船相距海里                           

⑵兩船出發(fā)后t小時時相距最近,即

即當t=4時兩船最近,最近距離為海里。

 

查看答案和解析>>

中,已知 ,面積,

(1)求的三邊的長;

(2)設(含邊界)內(nèi)的一點,到三邊的距離分別是

①寫出所滿足的等量關(guān)系;

②利用線性規(guī)劃相關(guān)知識求出的取值范圍.

【解析】第一問中利用設中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結(jié)合區(qū)域得到最值。

 

查看答案和解析>>

C

[解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當且僅當,即x時取等號,選C.

查看答案和解析>>


同步練習冊答案