(3)當(dāng)k = 時(shí).把.., .中所有與共線的向量按原來的順序排成一列.記為.., , , 令=.O為坐標(biāo)原點(diǎn).求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為.且..則稱點(diǎn)B 2007年杭州市第一次高考科目教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題卷評(píng)分標(biāo)準(zhǔn)一. 選擇題 : 本大題共10小題, 每小題5分, 共50分. 化題號(hào)12345678910答案BCABCB DCDA 查看更多

 

題目列表(包括答案和解析)

已知一列非零向量
an
,n∈N*,滿足:
a1
=(10,-5),
an
=(xn,yn)=k(xn-1-yn-1,xn-1+yn-1)
,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{|
an
|}是的通項(xiàng)公式;
(2)求向量
an-1
an
的夾角;(n≥2);
(3)當(dāng)k=
1
2
時(shí),把
a1
,
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記為
b1
,
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t
,
lim
n→∞
sn=s
,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>

已知一列非零向量
an
,n∈N*,滿足:
a1
=(10,-5),
an
=(xn,yn)=k(xn-1-yn-1xn-1+yn-1)
,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{|
an
|}是的通項(xiàng)公式;
(2)求向量
an-1
an
的夾角;(n≥2);
(3)當(dāng)k=
1
2
時(shí),把
a1
,
a2
,…,
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記為
b1
,
b2
,…,
bn
,…,令
OBn
=
b1
+
b2
+…+
bn
,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且
lim
n→∞
tn=t
lim
n→∞
sn=s
,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>

已知一列非零向量,n∈N*,滿足:=(10,-5),,(n32 ).,其中k是非零常數(shù).
(1)求數(shù)列{||}是的通項(xiàng)公式;
(2)求向量的夾角;(n≥2);
(3)當(dāng)k=時(shí),把,,…,,…中所有與共線的向量按原來的順序排成一列,記為,,…,,…,令,O為坐標(biāo)原點(diǎn),求點(diǎn)列{Bn}的極限點(diǎn)B的坐標(biāo).(注:若點(diǎn)坐標(biāo)為(tn,sn),且,則稱點(diǎn)B(t,s)為點(diǎn)列的極限點(diǎn).)

查看答案和解析>>


同步練習(xí)冊(cè)答案