12分 題號123456789101112答案CADBACDCBDBA 查看更多

 

題目列表(包括答案和解析)

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點P(2,1)在T1作用下的點Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點P,使得OM•OP=12.
(Ⅰ)求動點P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點,試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實數(shù)x恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

(選做題)請考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時請寫清題號.
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點A,直線OB與弦AC垂直并相交于點G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標(biāo)系與參數(shù)方程)求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.
C.選修4-5(不等式選講)(Ⅰ)求函數(shù)y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

(本小題滿分12分)
設(shè)函數(shù).
(Ⅰ)若當(dāng)取得極值,求a的值,并討論的單調(diào)性;
(Ⅱ)若存在極值,求a的取值范圍,并證明所有極值之和大于.
請考生在第22、23、24題中任選一題做答,如果多做,則按所做的第一題記分。做答時請寫清題號。

查看答案和解析>>

(本小題滿分12分)上海世博會舉辦時間為2010年5月1日~10月31日。福建館以“海西”為參博核心元素,主題為“潮涌海西,魅力福建”。福建館招募了60名志愿者,某高校有l(wèi)3人入選,其中5人為中英文講解員,8人為迎賓禮儀,它們來自該校的5所所學(xué)院(這5所學(xué)院編號為1~5號),人員分布如圖所示。若從這13名入選者中隨機抽取3人。

(1)求這3人所在學(xué)院的編號恰好成等比數(shù)列的概率;

(2)求這3人中中英文講解員人數(shù)的分布列及數(shù)學(xué)期望。

 

查看答案和解析>>

(本小題滿分12分)

某迷宮有三個通道,進(jìn)入迷宮的每個人都要經(jīng)過一扇智能門。首次到達(dá)此門,系統(tǒng)會隨機(即等可能)為你打開一個通道.若是1號通道,則需要1小時走出迷宮;若是2號、3號通道,則分別需要2小時、3小時返回智能門.再次到達(dá)智能門時,系統(tǒng)會隨機打開一個你未到過的通道,直至走出迷宮為止.

    (1)求走出迷宮時恰好用了1小時的概率;

(2)求走出迷宮的時間超過3小時的概率.

查看答案和解析>>


同步練習(xí)冊答案