題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進(jìn)行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標(biāo)原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時,求弦長|AB|的取值范圍.
一.選擇題
序號
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
A
B
D
D
C
A
C
C
B
D
A
二填空題
13.; 14.-6 ; 15.; 16..
三.解答題
17.解:(Ⅰ)
………………………………………………………………4分
…………………………6分
(Ⅱ) …………………………………………………8分
∴ …………………………………………………………………………10分
………………………………………………………………………………12分
18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4.
∴=
.……………………………………………………………… 2分
則V=. ……………………………………………………………… 4分
(Ⅱ)∵PA=CA,F(xiàn)為PC的中點,∴AF⊥PC. …………………………5分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點,F(xiàn)為PC中點,∴EF∥CD.則EF⊥PC. …………………………7分
∵AF∩EF=F,∴PC⊥平面AEF.…………………………………………………………8分
(Ⅲ)以A為坐標(biāo)原點,AD,AP所在直線分別為y軸,z軸,建立空間直角坐標(biāo)系,
則平面PAD的法向量為:=(1,0,0)
由(Ⅱ)知AF⊥PC,AF⊥CD ∴AF⊥平面PCD
∴為平面PCD的法向量.
∵P(0,0,2),C∴=
,即二面角C-PD-A的余弦值為…………12分
19.解:設(shè)第一個匣子里的三把鑰匙為A,B,C,第二個匣子里的三把鑰匙為a,b,c(設(shè)A,a能打開所有門,B只能打開第一道門,b只能打開第二道門,C,c不能打開任何一道門)
(Ⅰ)…………………………………………………………………………4分
(Ⅱ)(第一次只能拿B,第二次只能拿c) ……………………………6分
(第一次只能拿B,第二次只能拿b) ……………………………8分
(第一次拿A,第二次隨便拿,或第一次拿B,第二次拿a) …10分
…………………………12分
20.(Ⅰ)依題
即( …………………………………………………3分
故為等差數(shù)列,a1=1,d=2
………………………………………………………………………………………………5分
(Ⅱ)設(shè)公比為q,則由b1b2b3=8,bn>0…………………………………………………6分
又成等差數(shù)列
………………………………………………………………………………………8分
或…………………………………………………………………………………10分
或……………………………………………………………………12分
21解:(Ⅰ)依題PN為AM的中垂線
…………………………………………………………2分
又C(-1,0),A(1,0)
所以N的軌跡E為橢圓,C、A為其焦點…………………………………………………………4分
a=,c=1,所以為所求………………………………………………………5分
(Ⅱ)設(shè)直線的方程為:y=k(x-1)代入橢圓方程:x2+2y2=2得
(1+2k2)x2-4k2x+2k2-2=0………………(1)
設(shè)G(x1,y1)、H(x2,y2),則x1,x2是(1)的兩個根.
…………………………………………………………7分
依題
………………………………………………………9分
解得:………………………………………………………………………12分
22.解:(Ⅰ)
若,則
即∴成等差數(shù)列……………………3分
(Ⅱ)依題意
∴切線
令得,即
∴切線過點.……………………………………………………………………………8分
(Ⅲ),則
∴
①時:
時,,此時為增函數(shù);
時,,此時為減函數(shù);
時,,此時為增函數(shù).
而,依題意有 ………………10分
②時:在時,
∴ 即……(☆)
記,則
∴為R上的增函數(shù),而,∴時,
恒成立,(☆)無解.
綜上,為所求.…………………………………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com