題目列表(包括答案和解析)
若是函數(shù)在點(diǎn)附近的某個(gè)局部范圍內(nèi)的最大(。┲,則稱是函數(shù)的一個(gè)極值,為極值點(diǎn).已知,函數(shù).
(Ⅰ)若,求函數(shù)的極值點(diǎn);
(Ⅱ)若不等式恒成立,求的取值范圍.
(為自然對(duì)數(shù)的底數(shù))
若是函數(shù)在點(diǎn)附近的某個(gè)局部范圍內(nèi)的最大(小)值,則稱是函數(shù)的一個(gè)極值,為極值點(diǎn).已知,函數(shù).
(Ⅰ)若,求函數(shù)的極值點(diǎn);
(Ⅱ)若不等式恒成立,求的取值范圍.
(為自然對(duì)數(shù)的底數(shù))
()某地2004年第一季度應(yīng)聘和招聘人數(shù)排行榜前5個(gè)行業(yè)的情況列表如下:
行業(yè)名稱 | 計(jì)算機(jī) | 機(jī)械 | 營(yíng)銷 | 物流 | 貿(mào)易 |
應(yīng)聘人數(shù) | 215830 | 200250 | 154676 | 74570 | 65280 |
行業(yè)名稱 | 計(jì)算機(jī) | 營(yíng)銷 | 機(jī)械 | 建筑 | 化工 |
招聘人數(shù) | 124620 | 102935 | 89115 | 76516 | 70436 |
若用同一行業(yè)中應(yīng)聘人數(shù)與招聘人數(shù)比值的大小來衡量該行業(yè)的就業(yè)情況,則根據(jù)表中的數(shù)據(jù),就業(yè)形勢(shì)一定是 ( )
A.計(jì)算機(jī)行業(yè)好于化工行業(yè) B.建筑行業(yè)好于物流行業(yè)
C.機(jī)械行業(yè)最緊張 D.營(yíng)銷行業(yè)比貿(mào)易行業(yè)緊張
16、某地2004年第一季度應(yīng)聘和招聘人數(shù)排行榜前5個(gè)行業(yè)的情況列表如下
|
一、選擇題:
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
A
D
A
B
D
B
C
B
C
D
B
1.提示:,故選C。
2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A
3.提示:又,所以,故選D。
4.提示:在AB上取點(diǎn)D,使得,則點(diǎn)P只能在AD內(nèi)運(yùn)動(dòng),則,
5.提示:排除法選B。
6.提示:由圖(1)改為圖(2)后每次循環(huán)時(shí)的值都為1,因此運(yùn)行過程出現(xiàn)無限循環(huán),故選D
7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個(gè)數(shù),19是中位數(shù),乙得分為5,7,11,11,13,20,22,30,31,40。共11個(gè)數(shù),13是中位數(shù)。
故選B。
8.提示:得所以,故選C。
9.提示:由及得
如圖
過A作于M,則
得.
故選B.
10.提示:不妨設(shè)點(diǎn)(2,0)與曲線上不同的三的點(diǎn)距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。
11.提示:使用特值法:取集合當(dāng)可以排除A、B;
取集合,當(dāng)可以排除C;故選D;
12.提示:n棱柱有個(gè)頂點(diǎn),被平面截去一個(gè)三棱錐后,可以分以下6種情形(圖1~6)
2在圖4,圖6所示的情形,還剩個(gè)頂點(diǎn);
在圖5的情形,還剩個(gè)頂點(diǎn);
在圖2,圖3的情形,還剩個(gè)頂點(diǎn);
在圖1的情形,還剩下個(gè)頂點(diǎn).故選B.
二、填空題:
13.4
提示:
由(1),(2)得或,所以。
14.
提示:斜率 ,切點(diǎn),所以切線方程為:
15.
提示:當(dāng)時(shí),不等式無解,當(dāng)時(shí),不等式變?yōu)?sub> ,
由題意得或,所以,或
16.
三、解答題:
17.解:① ∵∴的定義域?yàn)镽;
② ∵,
∴為偶函數(shù);
③ ∵, ∴是周期為的周期函數(shù);
④ 當(dāng)時(shí),= ,
∴當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí),
=,
單調(diào)遞增;又∵是周期為的偶函數(shù),∴在上單調(diào)遞增,在上單調(diào)遞減();
⑤ ∵當(dāng)時(shí);
當(dāng)時(shí).∴的值域?yàn)?sub>;
⑥由以上性質(zhì)可得:在上的圖象如圖所示:
18.解:(Ⅰ)取PC的中點(diǎn)G,連結(jié)EG,GD,則
由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。
所以四邊形FEGD為矩形,因?yàn)镚為等腰Rt△RPD斜邊PC的中點(diǎn),
所以DG⊥PC,
|