可得數(shù)列的通項(xiàng)公式是. 查看更多

 

題目列表(包括答案和解析)

(16分)已知數(shù)列的通項(xiàng)公式為.

(1)若成等比數(shù)列,求的值;

(2)是否存在,使得成等差數(shù)列,若存在,求出常數(shù)的值;若不存在,請說明理由;

(3)求證:數(shù)列中的任意一項(xiàng)總可以表示成數(shù)列中其它兩項(xiàng)之積.

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)公式為an=
nn+a
(n,a∈N*)

(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項(xiàng)an總可以表示成數(shù)列中其它兩項(xiàng)之積.

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)公式為數(shù)學(xué)公式
(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項(xiàng)an總可以表示成數(shù)列中其它兩項(xiàng)之積.

查看答案和解析>>

已知數(shù)列{an}的通項(xiàng)公式為
(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項(xiàng)an總可以表示成數(shù)列中其它兩項(xiàng)之積.

查看答案和解析>>

已知數(shù)列滿足(I)求數(shù)列的通項(xiàng)公式;

(II)若數(shù)列,前項(xiàng)和為,且證明:

【解析】第一問中,利用,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

第二問中, 

進(jìn)一步得到得    即

是等差數(shù)列.

然后結(jié)合公式求解。

解:(I)  解法二、,

∴數(shù)列{}是以首項(xiàng)a1+1,公比為2的等比數(shù)列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差數(shù)列.

     

 

查看答案和解析>>


同步練習(xí)冊答案