解:(Ⅰ) 查看更多

 

題目列表(包括答案和解析)

解:(Ⅰ)設,其半焦距為.則

   由條件知,得

   的右準線方程為,即

   的準線方程為

   由條件知, 所以,故,

   從而,  

(Ⅱ)由題設知,設,,,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得.從而,,即

   由,得.所以,

   故

查看答案和解析>>

(Ⅰ)當a=2時,解關于x的不等式:(x+a)(x-2a+1)<0
(Ⅱ)解關于x的不等式:(x-1)(x-2a+1)<0.

查看答案和解析>>

(Ⅰ)求值:0.16-
1
2
-(2009)0+16
3
4
+log2
2
;
(Ⅱ)解關于x的方程(log2x)2-2log2x-3=0

查看答案和解析>>

(Ⅰ)解關于x的不等式:x2-2x+1-a2≥0;
(Ⅱ)已知集合A是函數(shù)y=lg(20+8x-x2)的定義域,p:x∈A,q:x2-2x+1-a2≥0(a>0),若?p是q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

(Ⅰ)閱讀理解:
①對于任意正實數(shù)a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有當a=b時,等號成立.
②結(jié)論:在a+b≥2
ab
(a,b均為正實數(shù))中,若ab為定值p,則a+b≥2
p
,
只有當a=b時,a+b有最小值2
p

(Ⅱ)結(jié)論運用:根據(jù)上述內(nèi)容,回答下列問題:(提示:在答題卡上作答)
①若m>0,只有當m=
 
時,m+
1
m
有最小值
 

②若m>1,只有當m=
 
時,2m+
8
m-1
有最小值
 

(Ⅲ)探索應用:
學校要建一個面積為392m2的長方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖).問游泳池的長和寬分別為多少米時,共占地面積最。坎⑶蟪稣嫉孛娣e的最小值.
精英家教網(wǎng)

查看答案和解析>>


同步練習冊答案