假設(shè).不等式成立.即.兩邊乘以3得 查看更多

 

題目列表(包括答案和解析)

對(duì)于不等式
n2+n
<n+1(n∈N*),某同學(xué)用數(shù)學(xué)歸納法的證明過程如下:
(1)當(dāng)n=1時(shí),
12+1
<1+1,不等式成立.
(2)假設(shè)當(dāng)n=k(k∈N*)時(shí),不等式成立,即
k2+k
<k+1,則當(dāng)n=k+1時(shí),
(k+1)2+(k+1)
=
k2+3k+2
(k2+3k+2)+(k+2)
=
(k+2)2
=(k+1)+1,∴當(dāng)n=k+1時(shí),不等式成立.
則上述證法( 。
A、過程全部正確
B、n=1驗(yàn)得不正確
C、歸納假設(shè)不正確
D、從n=k到n=k+1的推理不正確

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即,

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí), 

 

查看答案和解析>>

對(duì)于不等式某同學(xué)應(yīng)用數(shù)學(xué)歸納法證明的過程如下:

(1)當(dāng)時(shí),,不等式成立

(2)假設(shè)時(shí),不等式成立,即

那么時(shí),

不等式成立根據(jù)(1)(2)可知,對(duì)于一切正整數(shù)不等式都成立。上述證明方法(     )

A.過程全部正確           B.驗(yàn)證不正確

C.歸納假設(shè)不正確         D.從的推理不正確

 

查看答案和解析>>

對(duì)于不等式≤n+1(n∈N+),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時(shí),≤1+1,不等式成立.

(2)假設(shè)n=k(k∈N+)時(shí),不等式成立,即<k+1,則n=k+1時(shí),

=(k+1)+1.

所以當(dāng)n=k+1時(shí),不等式成立.

上述證法(    )

A.過程全部正確

B.n=1驗(yàn)得不正確

C.歸納假設(shè)不正確

D.從n=k到n=k+1的推理不正確

查看答案和解析>>

用數(shù)學(xué)歸納法證明不等式n+1(nN*),某學(xué)生的證明過程如下:

(1)當(dāng)n=1時(shí),≤1+1,不等式成立.

(2)假設(shè)n=kkN*)時(shí)不等式成立,即<k+1,則n=k+1時(shí),

=<==(k+1)+1,

∴當(dāng)n=k+1時(shí),不等式成立.上述證法

A.過程全程正確

B.n=1驗(yàn)得不正確

C.歸納假設(shè)不正確

D.從n=kn=k+1的推理不正確

查看答案和解析>>


同步練習(xí)冊(cè)答案