已知拋物線C的頂點在坐標原點O.準線方程是.過點的直線與拋物線C相交于不同的兩點A.B 查看更多

 

題目列表(包括答案和解析)

(12分)已知拋物線C的頂點在坐標原點O,準線方程是,過點的直線與拋物線C相交于不同的兩點A,B

   (I)求拋物線C的方程及直線的斜率的取值范圍;

   (Ⅱ)求(用表示)

查看答案和解析>>

(2009•河西區(qū)二模)已知拋物線C的頂點在坐標原點O,準線方程是x=-2,過點M(-1,1)的直線l與拋物線C相交于不同的兩點A,B
(I)求拋物線C的方程及直線l的斜率k的取值范圍;
(Ⅱ)求|
AB
|
(用k表示)

查看答案和解析>>

已知雙曲線C的中心在坐標原點O,兩條準線的距離為,其中一個焦點恰與拋物線x 2 + 10 x 4 y + 21 = 0的焦點重合。

(1)求雙曲線C的方程;

(2)若P為C上任意一點,A為雙曲線的右頂點,通過P、O的直線與從A所引平行于漸近線的直線分別交于Q、R。試證明:| OP |是| OQ |與| OR |的等比中項。

查看答案和解析>>

如圖,已知拋物線C的頂點在原點O,焦點為F(0,1).

(Ⅰ)求拋物線C的方程;

(Ⅱ)在拋物線C上是否存在點P,使得過點P的直線交拋物線C于另一點Q,滿足PF⊥QP,且PQ與拋物線C在點P處的切線垂直?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

已知拋物線x2=4y的焦點是橢圓  C:
x2
a2
+
y2
b2
=1(a>b>0)
一個頂點,橢圓C的離心率為
3
2
,另有一圓O圓心在坐標原點,半徑為
a2+b2

(1)求橢圓C和圓O的方程;
(2)已知M(x0,y0)是圓O上任意一點,過M點作直線l1,l2,使得l1,l2與橢圓C都只有一個公共點,求證:l1⊥l2

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空題:(每小題4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答題:(共76分,以下各題為累計得分,其他解答請相應(yīng)給分)

17.解:(I)

          

        由,得。

        又當,得

       

       (Ⅱ)當

        即時函數(shù)遞增。

        故的單調(diào)增區(qū)間為,

18.解:(I)各取1個球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

等30種情況

其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

故1白1黑的概率為

   (Ⅱ)2紅有2種,2白有4種,2黑有3種,

故兩球顏色相同的概率為

   (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

故至少有1個紅球的概率為

19.解:(I)側(cè)視圖   (高4,底2

       

   (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,為直線PC與底面ABC所成的角

中,PA=4,AC=,

20.解:(I)由題意設(shè)C的方程為,得。

   

    設(shè)直線的方程為,由

    ②代入①化簡整理得  

    因直線與拋物線C相交于不同的兩點,

    故

    即,解得時僅交一點,

   (Ⅱ)設(shè),由由(I)知

   

   

   

21.解:(I)   由

于是

切線方程為,即

   (Ⅱ)令,解得

    ①當時,即時,在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

    ②當,即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

    ③當時,內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

    由,得,故當時,

    當時,

22.解:(I)設(shè)的首項為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當時,,當時,

       

        于是

        設(shè)存在正整數(shù),使對恒成立

        當時,,即

        當時,

       

        時,時,,當時,

        存在正整數(shù)或8,對于任意正整數(shù)都有成立。

www.ks5u.com

 

 


同步練習冊答案